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ABSTRACT

Probabilistic risk assessment (PRA) is a mature technology that can provide a quantitative assessment of the risk from
accidents in nuclear power plants. It involves the development of models that delineate the response of systems and
operatorsto accident initiating events. Additional modelsaregenerated toidentify thecomponent failuremodesrequired
to cause the accident mitigating systems to fail. Each component failure mode is represented as an individual “basic
event” inthe systems models. Estimates of risk are obtained by propagating the uncertainty distributionsfor each of the
parameters through the PRA models.

The data analysis portion of a nuclear power plant PRA provides estimates of the parameters used to determine the
frequencies and probabilities of the various events modeled ina PRA. This handbook provides guidance on sources of
information and methods for estimating the parameters used in PRA models and for quantifying the uncertaintiesin the
estimates. This includes determination of both plant-specific and generic estimates for initiating event frequencies,
component failure rates and unavailabilities, and equipment non-recovery probabilities.
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FOREWORD

During the last severa years, both the U.S. Nuclear Regulatory Commission (NRC) and the nuclear industry have
recognized that probabilistic risk assessment (PRA) has evolved to the point where it can be used in a variety of
applications including as a tool in the regulatory decision-making process. The increased use of PRA has led to the
conclusion that the PRA scope and model must be commensurate with the applications. Several procedural guides and
standards have been and are being devel oped that i dentify requirementsfor the PRA models. For example, the* Standard
For Probabhilistic Risk Assessment For Nuclear Power Plant Applications’ published by The American Society of
Mechanical Engineers(ASME) in2002 (ASME-RA-S-2002) definesrequirementsfor PRA analysisused to devel op risk-
informed decisions for commercial nuclear power plants, and describes a process for applying these requirements in
specific applications. This handbook was generated to support these documents by providing a compendium of good
practices that a PRA analyst can use to generate the parameter distributions required for quantifying PRA models.

Theincreased use of risk assessment hasalso helped promote the ideathat the collection and analysis of event datais
an important activity in and of itself. In particular, the monitoring of equipment performance and evaluation of
equipment trends can be used to enhance plant performance and reliability. The reference material provided in this
handbook can support those efforts.

Thishandbook providesreferences on sources of information and methodsfor estimating parameter distributions. This
includes determination of both plant-specific and generic estimates for initiating event frequencies, component failure
rates and unavailability, and equipment non-recovery probabilities, all of which directly supplement the ASME PRA
standard.

Thishandbook providesthe basic information needed to generate estimates of the parameterslisted above. It beginsby
describing the probability models and plant data used to eval uate each of the parameters. Possible sourcesfor the plant
data are identified and guidance on the collection, screening, and interpretationis provided. The statistical techniques
(both Bayesian and classical methods) required to analyze the collected data and test the validity of statistical models
are described. Examples are provided to help the PRA analyst utilize the different techniques.

This handbook also provides advanced techniques that address modeling of time trends. Methods for combining data
fromanumber of similar, but not identical, sourcesare also provided. Thisincludesempirical and hierarchical Bayesian
approaches. Again, examples are provided to guide the analyst.

This handbook does not provide guidance on parameter estimation for al types of events included in a PRA.
Specifically, common cause failure and human error probabilities are not addressed. In addition, guidance is not
provided with regard to the use of expert elicitation. For analysis of these events, the PRA analyst should consult other
sources, some of which are cited in Chapter 1.

XXi



ACKNOWLEDGMENTS

The authors wish to acknowledge Dennis C. Bley, lyiin Chang, Mary T. Drouin, Ledie E. Lancaster, Gareth W. Parry,
Dale M. Rasmuson, David Robinson, Arthur D. Salomon, and Nathan O. Siu, who gave extensive and insightful written
comments. In particular, it was Mary Drouin’sinitiative that started the project. She provided the early guidance and
support for the devel opment of the document. Bley and Parry not only provided comments, but also contributed text that
was included in the final report. W. Jay Conover gave helpful advice on tests of serial independence, and David S.
Moore gave advice on the relation of the chi-squared statistic and the deviance. Robert F. Cavedo and Steven A. Eide
supplied information on the treatment of unavailability in current PRAs. Robert W. Y oungblood contributed ideas and
references on the relation of the two models for failure to start. Steven M. Alferink, William J. Galyean, CynthiaD.
Gentillon, DanaL. Kelly, and Martin B. Sattison supplied examplesand constructive comments. Ralph Nyman provided

information about the Swedish [-Book. TeresaSypeprovided help informatting thereport. Christine E. White produced
many of the figures.

XXil



AC
AFW
ALWR
ANO
ANS|
ASEP
ASME
ATWS
BWR
CDF
c.d.f.
ComEd
ConEd
CPC
CREDO
CcvC
DC
DG
DOE
ECCS
EDF
EDG
EEI
EF
EPIX
EPRI
FTR
FTS
GE
HCF
HEP
HHRAG
HPC
HPP
HRA
HVAC
|EEE
IGSCC
ii.d.
INEL
INEEL
INPO
IPE
IPEEE
IPRDS
IREP
LER
LCO
LOCA
LOSP
MCMC

ABBREVIATIONS

aternating current

auxiliary feedwater

Advanced Light Water Reactor

Arkansas Nuclear One

American National Standards Institute
Accident Sequence Evaluation Program
American Society of Mechanical Engineers
anticipated transient without scram

boiling water reactor

core damage frequency

cumulative distribution function
Commonwealth Edison

Consolidated Edison

Consumers Power Company

Centralized Reliability Data Organization
chemical and volume control

direct current

diesel generator

Department of Energy

emergency core cooling system

empirical distribution function
emergency diesel generator

Edison Electric Institute

error factor

Equipment Performance and Information Exchange System
Electric Power Research Institute

faillureto run

failureto start

General Electric

Hardware Component Failure

human error probability

Human and Hardware Reliability Analysis Group
high pressure coolant injection

homogeneous Poisson process

human reliability analysis

heating, ventilation and air conditioning
Institute of Electrical and Electronics Engineers
intergranular stress corrosion cracking
independent identically distributed

Idaho National Engineering Laboratory

Idaho National Engineering and Environmental Laboratory
Institute of Nuclear Power Operations
Individual Plant Examination

Individual Plant Examination of External Events
In-Plant Reliability Data Base for Nuclear Power Plant Components
Interim Reliability Evaluation Program
Licensee Event Report

limiting conditions of operation

loss of coolant accident

loss of offsite power

Markov Chain Monte Carlo

XXiii



MLE maximum likelihood estimate, or maximum likelihood estimator, depending on the context (see
estimate in glossary)

MOV motor-operated valve

MSE mean square error

MSIV main steam isolation valve

MTTF mean time to failure

MTTR mean time to repair

NA not applicable

NHPP nonhomogeneous Poisson process

NPE Nuclear Power Experience

NPP Nuclear Power Plant

NPRDS Nuclear Plant Reliability Data System

NRC U.S. Nuclear Regulatory Commission

NREP Nuclear Reliability Evaluation Program

NSAC Nuclear Safety Analysis Center

NUCLARR Nuclear Computerized Library for Assessing Reactor Reliability
OREDA Offshore Reliability Data

PCS Power Conversion System

PECO Philadel phia Electric Company

p.d.f. probability density or distribution function

PLG Pickard, Lowe and Garrick, Inc.

PORV power operated relief valve

PRA Probabilistic Risk Assessment

PSA Probabilistic Safety Assessment

PWR pressurized water reactor

RAC Reliability Analysis Center

RADS Reliability and Availability Data System

RCIC reactor core isolation cooling

RHR residual heat removal

RMIEP Risk Methods I ntegration and Evaluation Program
RPS reactor protection system

RSSMAP Reactor Safety Study Methodology Application Program
SAIC Scientific Applications International Corporation
SBLOCAs small-bresak |oss-of-coolant accidents

SCSS Sequence Coding and Search System

SKi Swedish Nuclear Power Inspectorate

SRV safety relief valve

SSPI Safety System Performance Indicator

SwRI Southwest Research I nstitute

U.K. United Kingdom

u.s United States

XXV



1. INTRODUCTION

1.1 Objective

The data analysis portion of a nuclear power plant
probabilistic risk assessment (PRA) provides estimates
of the parameters used to determine thefrequenciesand
probabilities of the various events modeled in a PRA.
The objective of this handbook is to provide methods
for estimating the parameters used in PRA models and
for quantifying the uncertainties in the estimates.

1.2 Background

Probabilistic risk assessment is a mature technology
that can provide a quantitative assessment of the risk
from accidentsin nuclear power plants. Itinvolvesthe
development of models that delineate the response of
systems and operators to accident initiating events.
Additional models are generated to identify the
component failure modesrequired to cause the accident
mitigating systems to fail. Each component failure
mode is represented as an individual “basic event” in
the systems models. Estimates of risk are obtained by
propagating the uncertainty di stributionsfor each of the
parameters through the PRA models.

During the last several years, both the U.S. Nuclear
Regulatory Commission (NRC) and thenuclear industry
have recognized that PRA has evolved to the point
where it can be used in a variety of applications,
including as a tool in the regulatory decision-making
process. The increased use of PRA has led to the
conclusion that the PRA scope and model must be
commensurate with the applications. Several
procedural guides and standards have been and are
being devel oped that identify requirementsfor the PRA
models. This handbook was generated to supplement
these documents. It provides a compendium of good
practices that a PRA analyst can use to generate the
parameter distributions required for quantifying PRA
models.

The increased use of risk assessment has also helped
promote the idea that the collection and analysis of
event data is an important activity in and of itself. In
particular, the monitoring of equipment performance
and evaluation of equipment trends can be used to
enhance plant performance and reliability. The
guidance provided in this handbook can support those
efforts.
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1.3 Scope

This handbook provides guidance on sources of
information and methods for estimating parameter
distributions.  This includes determination of both
plant-specific and generic estimates for initiating event
frequencies, component failure rates and
unavailabilities, and equi pment non-recovery probabili-
ties.

This handbook provides the basic information needed
to generate estimates of the parameterslisted above. It
begins by describing the probability models and plant
data used to evaluate each of the parameters. Possible
sourcesfor the plant dataareidentified and guidanceon
thecollection, screening, and interpretationisprovided.
The statistical techniques (both Bayesian and classical
methods) required to analyzethe collected dataand test
the validity of datisticd models are described.
Examples are provided to help the PRA analyst utilize
the different techniques.

This handbook also provides advanced techniques that
address modeling of time trends. Methods for
combining data from a number of similar, but not
identical, sources are also provided. These are the
empirical and hierarchical Bayesian approaches.
Again, examples are provided to guide the analyst.

Thishandbook doesnot provide guidance on parameter
estimation for all of the events included in a PRA.
Specifically, common cause failure and human error
probabilities are not addressed. |n addition, guidance
is not provided with regard to the use of expert
elicitation. For these topics, the PRA analyst should
consult other sources, such asthe following references:

Common cause failures

NUREG/CR-5497 (Marshall et al. 1998),
NUREG/CR-6268 (Kvarfordt et al. 1998),
NUREG/CR-5485 (Mosleh et al. 1998),
NUREG/CR-4780 (Mosleh et al. 1988), and
EPRI NP-3967 (Fleming, 1985).

Human errors

. NUREG/CR-1278 (Swain and Guttman, 1983),
. NUREG/CR-4772 (Swain, 1987),
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«  NUREG-1624 (NRC, 2000b), and
«  EPRI TR-TR-100259 (Parry et al. 1992).

Expert Judgement

. NUREG/CR-6372 (Budnitz et al. 1997) and
. NUREG/CR-1563 (Kotra et a. 1996).

Thislistisnot meant to beacomprehensivelist of all of
the methodol ogies available for performing these types
of analyses.

1.4 Contentsof the Handbook

This section provides aroad map of the contents of the
handbook and an overview discussion on how to usethe
handbook to perform the elements of a data analysis.
The basics of probability and statistics described in
Appendices A and B, respectively, are provided as
referencematerial for theanalyst. Appendix Cprovides
statistical tablesfor selected distribution typesthat can
be used in the data analysis.

1.4.1 ldentification of Probability Models
The handbook provides guidance on the evaluation of
five types of parameters that are included in a PRA:

initiating events,

failuresto start or change state,
failuresto run or maintain state,
durations, and

unavailability from being out of service.

A description of each of these parameters along with
examples, is provided in Chapter 2. Chapter 2 is
fundamental reading for all users of this handbook.

The first step in a data analysis is to determine the
appropriate probability models to represent the
parameter. Chapter 2 provides a detailed description
of the standard probability modelsfor each event. This
includesadiscussion of theassumptionsonthephysical
process inherent in the models and a description of the
kind of data that can be observed. The type of data
required to estimate the model parameter(s) are
described and example data sets are examined in the
light of the model assumptions. These examinations
illustrate the kind of thinking necessary for the data
anayst. Finaly, a short discussion of related issuesis
presented for the analyst to consider.
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1.4.2 Coallection of Plant Specific Data

Once probability models have been defined for the
basic events, plant-specific datashould beeval uated for
the purpose of quantifying estimates of the probability
model parameters. Plant-specific data, if available in
sufficient quantity and quality, is the most desirable
basis for estimating parameter values. Chapter 5
discusses the process by which plant-specific data
should be identified, collected, screened, and
interpreted for applicability to the basic events defined
in the systems analysis and to their probability models.
To ensure that the collection and evaluation of plant-
specific data is thorough, consistent, and accurate, the
steps laid out in Chapter 5 should be followed for
events defined in a PRA. The identification and
evaluation of appropriate sources of plant-specific data
for the basic events are discussed in Section 4.1.

The process for collecting and evaluating data for
initiating eventsis discussed in Section 5.1. Guidance
isprovided for screening the data, for grouping the data
into appropriate categories of initiating events, and for
evaluating the denominator associated with the data.

The process for collecting and evauating data for
component failures is discussed in Section 5.2. It is
critical that data be collected and processed accurately
according to the definition of the component boundary.
For example, it should be clearly noted whether or not
a pump's control circuit is within or without the
physical boundaries of the component for purposes of
systems modeling. If failure of the control circuit has
been modeled separately from hardware failures of the
pump, then datainvolving failure of the pump should be
carefully evaluated to ensure that actuation failures and
other pump faults are not erroneously combined. This
process could result in some iteration between the
systems analysis task and the data collection task. Itis
possible that system models may be simplified or
expanded based on insights derived during the data
collection. Chapter 3 describesthe difference between
faults and failures, and discusses component boundary
definitions and failure severity as it relates to data
collection and analysis.

Other aspects of data collection for component failures
discussed in Section 5.2 include classification and
screening of the data, allocation of the data to
appropriate component failure modes, and exposure
evaluation (determining the denominator for parameter
estimates).



The collection of datafor recovery eventsis described
in Section 5.3. Guidanceis provided on where to find
recovery-rel ated dataand on how to interpret such data.

1.4.3 Quantification of Probability
Model Parameters

Onceappropriate probability model shave been selected
for each basic event, estimatesfor themodel parameters
must be quantified. Therearetwo basic approaches: 1)
statistical estimation based on available data; and 2)
utilization of generic parameter estimates based on
previous studies. Both approaches can incorporate
generic data. Severa generic data sources currently
availableand used throughout the nuclear PRA industry
areidentified in Section 4.2.

1.4.3.1 Parameter Estimation from
Plant-Specific Data

If the plant-specific data collection process yields data
of sufficient quantity and quality for the devel opment of
parameter estimates, the statistical methods in Chapter
6 can be applied to the data to derive and validate
parameter estimates for the basic events.

Chapter 6 discusses the dtatistical methods for
estimating the parameters of the probability models
defined in Chapter 2. Note that Appendix B discusses
basic concepts of statistics that will help the user to
understand the methods presented in Chapter 6.

For eachtypeof event, two fundamental approachesare
presented for parameter estimation: classica
(frequentist) and Bayesian. An overview and
comparison of these two approaches are presented in
Section 6.1. The Bayesian approachismore commonly
used in PRA applications, but classical methods have
some use in PRA, as discussed in Section 6.1.

The probability models discussed in Chapter 2 for each
type of event are applicable for most applications.
However, erroneous results can occur in some cases if
the assumptions of the model are not checked against
the data. In some applications (e.g., if the impact of
casual factors on component reliability is being
examined) it is imperative that the probability model
chosen for each basic event be validated given the
availabledata. It may seem sensibletofirst confirmthe
appropriateness of the model and then estimate the
parameters of the model. However, validation of a
model isusually possible only after the model has been
assumed and the corresponding parameters have been
estimated. Thus, estimation methodsare presented first
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in Chapter 6 for each type of probability model; then
methods for validating the models against the available
data are presented.

1.4.3.2 Parameter Estimation from Existing Data
Bases

If actual data are unavailable or of insufficient quality
or quantity then a generic data base will have to be
used. Several generic data sources currently available
and used throughout the nuclear PRA industry are
identified in Section 4.2. Section 4.2.6 provides
guidance on the selection of parameter estimates from
existing generic data bases.

14.4 Advanced Methods

The last two chapters of the handbook describes some
methods for analyzing trends in data and Bayesian
approaches for combining data from a number of
similar sources.

14.4.1 Analyzing Datafor Trendsand Aging

Data can be analyzed to assess the presence of time
trends in probability model failure rates and
probabilities (i.e., &and p). Such trends might be in
terms of calendar time or in terms of system age.
Ordinarily, the analysis of data to model time trends
involves complex mathematical techniques. However,
the discussion of Chapter 7 presentsvarious approaches
that have been implemented in computer software. The
discussionin Chapter 7 focuses on the interpretation of
the computer output for application in PRA.

1.4.4.2 Parameter Estimation Using Data from
Different Sources

Two Bayesian approaches for combining data from a
number of similar, but not identical, sources are
discussed in Chapter 8.

15 How toUseThisHandbook

This handbook isintended for workers in probabilistic
risk assessment (PRA), especially those who are
concerned with estimating parameters used in PRA
modeling. Broadly speaking, three groups of readers
are anticipated: data collectors, who will be finding,
interpreting, and recording the data used for the
estimates;, parameter estimators, who will be
constructing the parameter estimates from the data and
quantifying the uncertainties in the estimates; and (to a
lesser extent) PRA analysts, who will be using the
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estimated parameters. These three groups will find
their primary interests in different portions of the
handbook, as discussed below.

The major sections of the handbook can be grouped
into several areas:

* Foundation: Chapters1 and 2;

» DataCollection: Chapters 3, 4, and 5;

» Parameter Estimation: Chapters 6, 7, and 8; and

e Supporting Material: Appendices, References,
Index.

These sections are shown in Figure 1.1, a schematic
representation of the contents of the handbook.

PRA analystswill bemostinterestedin thefoundational
material. Datacollectorswill need to read much of the
foundational material, and then read the chapters on
datacollection. Parameter estimatorswill need to read
the foundational chapters, but may then wish to skip
directly to the relevant sections on parameter
estimation. The supporting material can be read by
anyone at any time.

The arrows in Figure 1.1 help the reader find the
quickest way to the sections of interest. For example,
the figure showsthat Chapters 3-5 and Chapters 6-8 do
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not refer to each other or assume material from the
other section, so it is possible to read from one section
and not the other. The only strong dependencies are
shown by the arrows: read Chapter 2 before starting
Chapter 3 or 6, read Chapter 3 before starting Chapter
4 or 5, and so forth. In practice, data collectors, data
analysts, and PRA analysts must work together, giving
feedback to each other. The handbook, on the other
hand, isformed of distinct segments, each of which can
be read inisolation from the others.

The material for PRA analysts and data collectors is
intended to be accessible by anyone with an engineering
background and some experiencein PRA. Thematerial
for data analysts, on the other hand, begins with
elementary techniques but eventually covers advanced
models and methods. These advanced topics will not
be needed in most cases, but are included as reference
material.

To aid the reader, Appendices A and B summarize the
basics of probability and statistics, and Appendix C
provides useful statistical tables. A glossary of termsis
provided in Appendix D. Persons who have no
previous experience with probability or statistics will
need a more thorough introduction than is provided in
these sections of the handbook.
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2. BASIC EVENT PROBABILITY MODELS

2.1 Overview

This chapter introduces the models used for basic
events and for initiating events. Thisfirst sectionisan
overview, and the remaining sections of the chapter
give further detail.

Probabilistic risk assessment (PRA) considers various
possible accident sequences. An accident sequence
begins with an initiating event which challenges the
safety of the plant. Typically, one or more standby
safety systems are then demanded, and other, normally
operating, systems must continue operating to ensure
that no serious undesirable consequences occur. For
the systems to fail to bring the situation under control,
several components must either fail or be unavailable.
Thelogic eventsin the PRA model that represent these
failures or modes of unavailability are called basic
events.

Itisnot possibleto predict precisely when aninitiating
event or a component failure will occur, because the
processes that lead to their occurrences are complex.
Therefore, the initiating events and basic events are
modeled as resulting from random processes.

Thefirst step in the data analysis task is, therefore, to
determine the appropriate probability model to repre-
sent the initiating event or basic event. (Probability is
reviewed in Appendix A, and the probability models
introduced here are presented morefully there.) These
probability models typicaly have one or more
parameters. The next major step is to estimate the
values of these parameters. Thisestimationisbased on
the most applicable and available data. The process of
choosing data sources, extracting the data in an
appropriate form, and using it to estimate the
parameters is the main subject of this handbook.

Basiceventsarecustomarily divided into unavail ability
(because the equipment is undergoing testing or
maintenance), failure to start or change state, and
failure to run (after successfully starting) or maintain
state to the end of the required mission time.
Unavailability and failure to run are each modeled in a
singleway. Ontheother hand, two different probability
models have been used to represent afailureto start or
to change state. The first method is to model the
failures as having a constant probability of failure on
ademand. The second method isto model thefailures
as occurring, in an unrevealed way, randomly in time.
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The failed condition is then discovered at the time of
thedemand. Thisisusually called thestandby failure-
rate model. Both models are discussed here.

The above events are the typical ones considered in a
PRA. In addition, one must occasionally anayze
durations, such as the time to restore offsite power or
time to recover afailed component. Although such an
analysisis not needed for atypical accident sequence,
it is discussed in this handbook. Also, methods for
analyzing durations can be used when estimating
unavailability.

Insummary, fivetopicsare considered intherest of this
chapter:

e initiating events,

» failures to start or change state (modeled in two
possible ways),

» failuresto run or maintain state,

e durations, and

» unavailability from being out of service.

These topics are the subjects of Sections 2.2 through
2.6. Each section beginswith examples of the data that
might be analyzed. This is followed by a brief
subsection presenting the assumptions of the usua
model for the random process (the result of underlying
physical mechanisms) and describing the kind of data
that can be observed. The next subsection summarizes
the data required to estimate the model parameter(s).
The example data sets are then examined in the light of
the model assumptions. These examinations illustrate
the kind of thinking necessary for the data analyst.
Finally, the section may conclude with a short
discussion of related issues.

As a preview, Table 2.1 indicates the models, the
parameters, and the data needed for each of the topics
inthe above five bullets. Thetop line of the table also
indicates which section of Chapter 2 treats the topic.

The term system is used to denote the set of hardware
for which dataare collected; it may be an entire nuclear
power plant (NPP), or asysteminthetraditional sense,
such as the auxiliary feedwater (AFW) system, or a
train, component, or even piece part. This reducesthe
need for phrases such as “ system or component.”

Thelengthiest part of each section below consistsof the
examination of examples to see whether the



Basic Event Probability Models

Table2.1 Kindsof modelsconsidered.

2.2 Initiating | 2.3 Failuresto Start or Change | 2.4 Failuresto Run | 2.5 Durations | 2.6 Unavailability
Events State (2 models) or Maintain State
Typical Event
Event occurs | Standby system failson demand | Systemin operation | A condition System is unavail-
initiating an failsto run, or persistsfor a able, intentionally
accident component changes | random time out of service,
sequence state during mission | period when demanded
Parameter (s) to Estimate

8, event For failureon | For standby 8, rate of failureto Parametersof | q, fraction of time
frequency demand: failure: run assumed when system will

p, probability 8, rate of probability be out of service

of failure on occurrence of distribution of

demand standby duration time

failures
Data Required to Estimate Parameter s*

Number of Number of Number of Number of failures, | Dependson Onset times and
events, X, in failures, x, in failures, x, in X, intotal running model, but durations of
total time, t total number of | total standby time, t typicaly the observed out-of-

demands, n time, t lengths of the | service events, OR

observed observed fractions
durations of time when
system was out of
service

& The data here are the minimal requirementsto estimate the parameter. More detailed data are needed to check the
model assumptions.

assumptions of the probability model appear to be
satisfied. Verifying model assumptionsisanimportant
part of good data analysis. Ways to investigate the
appropriateness of assumptions are considered in
Chapter 6, along with parameter estimation. The
present chapter, however, only introduces the
assumptions and illustrates their meanings through
examples. If the assumptions are clearly not satisfied,
some mention isgiven of waysto generalize the model,
although such generalizations are not presented until
Chapters 7 and 8 in this handbook.

Also, examples and extended discussion of examples
are printed in Arial font, to distinguish them from the
more general material.
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2.2 Initiating Events

221 Examples

In the context of a nuclear-power-plant PRA, an
initiating event is any event that perturbs the steady
state operation of the plant, thereby initiating an
abnormal event such as atransient or aloss-of-coolant
accident within a plant. Initiating events begin
sequences of events that challenge plant control and
safety systems. Failure of these systems can lead to
core damage and a release of radioactivity to the
environment. However, the consideration of the
potentia plant responseto initiating eventsisirrelevant
when estimating their frequencies.



Here are several examples of data sets counting such
initiating events.

Example 2.1 Unplanned reactor trips

A U.S. commercial nuclear power plant had 34
unplanned reactor trips in 1987 through 1995. It
had its initial criticality on Jan. 3, 1987, and
experienced a total of 64651 critical hours, or
7.38 critical years (Poloski et al. 1999a).

Example 2.2 Shutdown loss of offsite power

In U.S. commercial nuclear power plants in 1980-
1996, there were 80 plant-centered loss-of-offsite-
power (LOSP) events during shutdown. In that
period, the plants experienced 455.5 reactor-
shutdown years (Atwood et al. 1998).

Example 2.3 Through-wall pipe leaks

In world-wide experience of western-style
pressurized water reactors (PWR)s (3362
calendar years of operation), a single through-wall
leak event has been reported in large-diameter
piping ( Poloski et al. 1999a, Appendix J).

The fina example of this section does not have
initiating eventsintheusual sense. However, themodel
assumptions and the form of the data are exactly the
same asfor initiating events. Therefore, such data can
be analyzed just like initiating-event data.

Example 2.4 Temperature sensor/transmitters

Eide etal. (1999a) report that temperature sensor/
transmitters in the reactor protection system
(RPS) of Westinghouse NPPs had 32 failures in
2264.1 component-years. These sensor/transmit-
ters operate continuously, and when they fail they
are repaired or replaced in a relatively short time.
The number of failures is conservatively estimated
from sometimes incomplete Nuclear Plant
Reliability Data System (NPRDS) data, and the
number of component years is based on an
estimated number of components per loop.

These examples have several elements in common.
First, they involve a number of events that occurred,
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and an exposuretime, or timeat risk, when the events
could have occurred. The next subsection will present
a simple probability model that gives rise to random
events in time. In addition, in each of the above
examples corrective action istaken after any event, so
that the system then resumes operation (the system is
repairable)) This means that the recorded operating
history consists of a sequence of random event
occurrences, which is summarized as a count of events
in some fixed time. Thistype of datawill direct usto
aparticular type of analysis, presented in Chapter 6.

The events may be the initiating events of an ordinary
PRA (Example 2.1), initiating events of a shutdown
PRA (Example 2.2), failures in a passive system
(Example 2.3), which incidentally happen to be
initiating events in a PRA. As mentioned above,
Example 2.4 does not describe initiating events in the
traditional PRA sense. However, the example may be
analyzed in the same way as the first three examples,
because the sensor/transmitter failures occur in a
continuously running system and they initiate quick
repair action. A PRA analyst would distinguish among
the examples based on their safety consequences. The
present discussion, however, adopts the viewpoint of
probability modeling, in which theimportant fact is not
the consequence of the events, but the way that they
occur randomly intime. Reactor trip initiators are the
prototypical examples of such events, but are not the
only examples.

The exposure time is the length of time during which
the events could possibly occur. In Example 2.1, the
exposure time is reactor-critical-years, because a
reactor trip can only occur when the reactor isat power.
Because only one plant is considered, “critical years’
can be used as shorthand for “reactor-critical-years.”
In Example 2.2, the event of interest is LOSP during
shutdown, so the exposure time must be the number of
reactor-shutdown-yearsinthestudy period. In Example
2.3, reactor-calendar-years are used, primarily because
more detailed worldwide data could not be easily
obtained. The model therefore assumes that a crack in
large-diameter piping could occur with equal
probability during operation and during shutdown. The
model also does not consider differences between
plants, such as differences in the total length of large-
diameter piping at a plant. In Example 2.4, the
exposure time is the number of component-years,
because the components operate constantly.

The possible examples are endless. The events could
be unplanned demands for a safety system, forced
outage events, or many other kinds of events that
resemble initiating events.
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The datagiven in the above examples are expressed in
the crudest summary terms: acount of eventsin atotal
exposure time. Thisis sufficient for the simple model
of thissection. Section 2.5 will consider more sophist-
icated models using the exact event times.

The data could also be broken down into smaller
pieces. For example, theinitiating event data could be
summarized for each calendar year, with an event count
and an exposure time reported separately for each year
from 1987 through 1995. This additional information
allows one to look for trends or other patterns, as
discussed in later chapters.

2.2.2 Probability Model

The assumptions concerning the physical process are
given here, along with a description of the kind of data
that can be observed.

It is standard to assume that the event count has a
Poisson distribution. As listed in Section A.6.2, the
usual assumptions (following Thompson 1981) for a
Poisson process are:

1. The probability that an event will occur in any
specified short exposure time period is
approximately proportional to the length of the
time period. In other words, thereisarate 8> 0,
such that for any interval with short exposure time
)t the probability of an occurrence in the interval
is approximately 8x )t.

2. Exactly smultaneous events do not occur.

3. Occurrences of events in digoint exposure time
periods are statistically independent.

Inaddition, it isworthwhileto spell out the kind of data
that can be observed.

* A random number of events occur in some
prespecified, fixed timeperiod. Asaminimum, the
total number of events and the corresponding time
period are observed.

Under the above assumptions, the number of
occurrences X in some fixed exposure time t is a
Poisson distributed random variable with mean - = &,

Pr(X=x)=e“u*Ix! . (2.2)

The probability distribution function (p.d.f.) is
sometimes used to abbreviate this: f(x) = Pr(X = x).
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(Throughout this handbook, upper case letters are used
for random variables and lower case lettersare used for
particular numbers.)

The parameter &8 is a rate or frequency. To make
things more clear, the kind of event is often stated, that
is, “initiating event rate” in Example 2.1, “through-
wall-crack occurrence frequency” in Example 2.3, and
so forth. Because the count of events during a fixed
period is a unitless quantity, the mean number of
occurrences - is also unitless. However, the rate 8
depends on the units for measuring time. In other
words, the units of &are per unit of time, such as 1/year
or 1/reactor-critical-hour.

Thismodel iscalled aPoisson process. It isextremely
simple, because it is completely specified by the
exposure time, t, and the one unknown parameter, 8.
Assumption 1 implies that the rate & does not change
over time, neither with a monotonic trend, nor
cyclically, nor in any other way. Assumption 2 says
that exactly simultaneouseventsdo not occur. Theonly
way that they could occur (other than by incredible
coincidence) isif some synchronizing mechanismexists
— a common cause. Therefore, the operationa
interpretation of Assumption 2 is that common-cause
events do not occur. Assumption 3 says that the past
history does not affect the present. In particular,
occurrence of an event yesterday does not make the
probability of another event tomorrow either more or
less likely. This says that the events do not tend to
occur in clusters, but nor do they tend to be
systematically spaced and evenly separated.

As stated above, a common cause that synchronizes
events violates Assumption 2. However, some
common-cause mechani smsdo not exactly synchronize
the events. Instead, the second event may occur very
soon after the first, as a dightly delayed result of the
common cause. Inthiscase, Assumption 3isviolated,
because the occurrence of one event increases the
probability of a second event soon after. One way or
the other, however, common-cause events violate the
assumptions of a Poisson process, by violating either
Assumption 2 or Assumption 3.

2.2.3 Data Needed to Validate the M odél
and Estimate &

Suppose that the Poisson model holds. Then any
reasonable estimator of & needs only two pieces of
information: the total exposure time, t, in the data
period, and the number of events, X, that occurred then.



However, more information is needed to investigate
whether the Poisson model isvalid. For example, the
data might cover a number of years or a number of
plants, and & might not be constant over time or the
same at all plants. These possibilities are not allowed
by thelisted model assumptions. To study whether they
occur, the times and locations of the initiating events
should be recorded, or at least the data should be
partitioned into subsets, for example corresponding to
plants or years. Then the event count and exposure
time, x, and t;, should be given for each subset.

224 Case Studies: Validity of Model
Assumptionsin Examples

L et usexaminethe reasonabl eness of the Poisson model
assumptions for Examples 2.1 through 2.4. Chapter 6
will address this issue by performing data analysis.
Herewewill merely citetheresultsof published studies
and use critical thinking.

Example 2.1 Initiating Events

An initiating event is an event with the reactor critical,
causing an unplanned reactor trip. Assume that any
time interval starts on some date at some time and
ends on some date at some time, and that the length
of the interval, )t, is the number of critical years
contained between the start and stop of the time
interval. For example, if the time period is two 24-
hour days and the reactor was critical for half of that
time, then )t = 1/365 critical years.

Assumption 1 is violated in two ways. First, in the
industry as a whole, and presumably in individual
plants, the probability of an initiating event in an
interval of length )t (such as one critical day) has not
been constant. Instead, the probability dropped
substantially from 1987 to 1995. Equivalently, the
event rate, & dropped from 1987 to 1995. This
violation can be eliminated by considering only a
short time period for the study, such as one calendar
year instead of nine years. If, however, the whole
nine-year period is of interest, a more complicated
model must be used, such as one of the trend
models described in Chapter 7.

A second violation of Assumption 1 arises because
this particular plant was new at the start of the study
period, with initial criticality on January 3, 1987, and
commercial start on May 2, 1987. Many new plants
seem to experience a learning period for initiating
events, and this plant had 15 of its 34 initiating
events during the first six months of 1987. After that
initial period with a high event rate, the event rate
dropped sharply. This violation of Assumption 1 can
be resolved by eliminating data before the plant
reached a certain age. That is, not counting either
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the operating time or the initiating events from the
plant until it has reached a certain age — excluding
that portion of the plant’s history from the universe
being studied.

Assumption 2 says that exactly simultaneous
initiating events do not occur. This is reasonable for
events at a single plant.

Assumption 3 says that the probability of an initiating
event in one time period does not depend on the
presence or absence of an initiating event in any
earlier time period. This assumption may be
challenged if the plant personnel learn from the first
event, thus reducing the probability of a second
event. This kind of dependence of one event on
another is not allowed by Assumption 3. Suppose,
however, that the learning is modeled as a general
kind of learning, so that the event rate decreases
over time but not as a clear result of any particular
event(s). This may justify using a Poisson model
with a trend in the event rate, as considered in detail
in Chapter 7.

There is a length of time when the reactor is down
after a reactor trip when an initiating event cannot
possibly occur. This does not violate Assumption 3
because during that time the plant has dropped out
of the study. Its shutdown hours are not counted in
the exposure time. Only when the reactor comes up
again does it begin contributing hours of exposure
time and possible initiating events.

Example 2.2 Shutdown LOSP

Just as with the previous example, consider the three
assumptions of the Poisson model. In this case,
because data come from the entire industry, & is
interpreted as the average rate for the entire industry.

First consider Assumption 1. The report that
analyzed this data (Atwood et al. 1998) found no
evidence of a trend in the time period 1980 through
1996. It did find evidence of differences between
plants, however. These differences can affect the
industry average, because plants enter the study
when they start up and leave the study when they
are decommissioned. When a plant with an
especially high or low event rate enters or leaves the
study, this will affect the industry average. However,
the event rate at the worst plant differed from the
industry average by only a factor of about 3.4, and
the best plant differed from the average by less than
that. Many plants (116) were considered. Therefore,
the effect of a single plant's startup or
decommissioning should be small. Therefore, it
appears that the overall industry event rate was
approximately constant, as required by Assumption
1.
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Assumption 2 rules out exactly simultaneous events.
In this example, however, events at sister units at a
single site are somewhat dependent, because a
common cause can result in LOSP events that are
simultaneous or nearly simultaneous at both units.

Of the 80 events in the data, two pairs of events
occurred together at sister units, each pair from a
common cause. Thus, simultaneous events do
occur, but they are not frequent. This departure from
Assumption 2 is probably not large enough to be
serious.

Assumption 3 requires statistical independence of
the number of events in disjoint time intervals. As
with Example 2.1, there may be some learning,
although the lack of trend indicates that any learning
is minimal.

In summary, the assumptions for the Poisson model
seem to be approximately satisfied.

Example 2.3 Through-Wall Leaks

This differs from the other examples in that the
number of events is very small. Any departures from
the Poisson assumptions cannot be seen in the data,
because so few events have occurred. With no
theoretical reason to postulate a trend or other
nonconstancy, or a high rate of multiple events, or
dependence between events, we accept the Poisson
assumptions. The assumptions may not be perfectly
true, and a different model may be more accurate,
but the Poisson model is simple, and good enough
for analyzing such a sparse data set.

Example 2.4 Temperature Sensor/Transmitters

A report by Eide et al. (1999a) divides the total study
time for instrumentation failures into two halves, and
finds a difference between &in 1984-1989 and &in
1990-1995. The example here is for 1990-1995 only.
Within this time period the report does not see strong
evidence of a trend. That is, a small trend may be
present, but the time period is too short, and the
failures too few, for any trend to be clear. Further,
because the components are regularly maintained, it
is reasonable to assume that the failure rate, 8, is
roughly constant, as required by Assumption 1.

Assumption 2 requires that common-cause failures
be negligible. However, the report states that 14 of
the 32 component failures occurred during four
common-cause events. Thus, Assumption 2 is
seriously violated.

Finally, Assumption 3 requires independence of the
number of events in disjoint time intervals. The
report does not address this issue, butindependence
appears plausible.
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In summary, the example violates Assumption 2, but
probably satisfies the other two assumptions. One
way to deal with the violation of Assumption 2 would
be to model the independent failures and the
common-cause failures separately, although Eide et
al. do not do this.

2.25 Discussion
2.25.1 MoreGeneral Models

The model considered thus far is a homogeneous
Poisson process (HPP), which has a constant event
occurrence rate, 8. The number of eventsintimetisa
Poisson random variable with parameter - = &. A
generalizationisa nonhomogeneous Poisson process
(NHPP), inwhich &isafunction of t. Suchamodel is
useful for analyzing trends. Chapter 6 includeswaysto
test the assumptions of ahomogeneous Poi sson process,
and Chapter 7 includes ways to analyze data where a
trend is present.

When data come from the industry, one may consider
the differences between plants. Ways to model such
differencesarediscussed in Chapter 8 of thishandbook.
The present chapter’ sinterest isrestricted to 8when no
such variation is present. Of coursg, if the data come
from only one plant, 8refersto that plant and the issue
of differences typically does not arise.

Any mathematical model, such as the model for a
homogeneous Poisson process given here, is an
imperfect approximation of the true process that
generated the data. Data are used to validate or refute
the adequacy of the model. The data set may be sparse
— in the present context, this means that the data set
contains few events. In this case, two consequences
typically result: (@) it is difficult or impossible to see
evidence of departuresfrom the model, and (b) the data
set contains too little information to allow redlistic
estimation of the parameters of a more complicated
model. If, instead, the data set has many events,
departuresfromthemodel becomevisible, andtypically
a more complicated model is appropriate. These
statements have been illustrated by the small and large
data sets given as examples.

2.2.5.2 Non-randomness of t

In the model considered here, the exposure time is
treated as fixed, and the number of eventsistreated as
random. Thisisacommon type of datafound in PRA
work. Sometimes, however, afixed number of events
isspecified by the datacollector, and the corresponding
total timeisrandom, asin the following two examples.



One example occurs when equipment is tested until it
fails. That is, a predetermined number of items are
tested, say x items. Each item is run until it fails, and
the total running time of the items is random. The
second example occursin a PRA context if the analyst
thinks that the event frequency has changed over time
and that only the recent history fully represents current
conditions. The analyst may then decide to consider
only the most recent events. If there are four recent
events, x is fixed at 4, and the corresponding time,
measured backwards from the present to the 4th event
in the past, is random.

These are examples of duration data with
exponentially distributed durations, discussed in
Section 2.5. The probability model is the Poisson
process presented above, but the data collection, and
resulting dataanalysis, are different. Because thetime
t until the xth event can be called awaiting time, these
modelsareal so sometimescalled waitingtimemodels.

2.3 Failureto Change State
This section considers two probability models, in

Subsections 2.3.2 and 2.3.3. First, however, example
data sets are given.

231 Examples

Here are four examples of failure to change state, three
with failure to start and one with failure to close.

Example 2.5 HPCI failures to start

At 23 BWRs in the 1987-1993 time period, the high
pressure coolant injection (HPCI) system had 59
unplanned attempts to start. The system failed to
start on 5 of these demands (Grant et al. 1999a).
The failures were typically erratic starts, which the
operator stabilized manually. These demands
occurred during 113.94 reactor-critical-years.

Example 2.6 EDG failures to start

Emergency diesel generators (EDGs) are
sometimes demanded because of unplanned loss of
power to a safety bus, and they are also tested
periodically, with one set of tests during each
operating cycle and another set of tests monthly. In
addition, a return-to-service test is normally
performed after maintenance of an EDG. At one
plant over an 18-month time period, the number of
such demands is counted, and the number of
failures to start is counted.
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Example 2.7 Steam binding in AFW

Between demands, steam binding can develop in
the AFW system, so that one or more pumps cannot
function when demanded. This is mentioned by
Wheeler et al. (1989), and by Nickolaus et al.
(1992).

Example 2.8 Failures of isolation valves

Nickolaus et al. (1992) review the causes of about
45 failures of air-operated and motor-operated
isolation valves. Some of the principal causes are
corrosion, instrument drift, and moisture in
instrument and control circuits. Other causes
include contamination and corrosion products in the
instrument air system, and debris in the system.
These are all conditions that can develop while the
valves are not being used.

2.3.2 Failure on Demand

All these examplesinvolve anumber of demandsand a
number of failures, where the terms “demand” and
“failure” can be defined according to the purposes of
the study. Non-PRA contexts provide many other
examples of failures on demand. A simple examplein
elementary probability or statistics coursesistossing a
coin n times, and counting the number of heads. Count
either ahead or atail asa“failure.” Just asinthe PRA
examples, this example has a number of demands, with
arandom number of the demands resulting in failures.

2.3.2.1 Probability Model

The standard model for such data assumes that the
number of failures has a binomial distribution. The
assumptions are listed in Appendix A.6.1. These
assumptions can be restated as two assumptions about
the physical processand one about the observable data:

1. On each demand, the outcome is a failure with
some probability p, and a success with probability
1 Y p. This probability p is the same for al
demands.

2. Occurrences of failures for different demands are
statistically independent; that is, the probability of
a failure on one demand is not affected by what
happens on other demands.

The following kind of data can be observed:
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* A random number of failures occur during some
fixed, prespecified number of demands. As a
minimum, the total number of failures and number
of demands are observed.

Under these assumptions, the random number of
failures, X, in some fixed number of demands, n, hasa
binomial (n, p) distribution.

Pr(X = x) = @ P (- o)™, o)

x=0,..,n

where

(n) B n!
x) xI(n-x)!

Thisdistribution hastwo parameters, n and p, of which
only the second is unknown. (Although n may not
always be known exactly, it is treated as known in this
handbook. Lack of perfect knowledge of n, and other
uncertaintiesinthedata, arediscussed briefly in Section
6.1.3.2)

2.3.2.2 Data Needed to Validate the M odel and
Estimate p

Suppose that the binomial model is appropriate. Then
any reasonable estimator of p needs only two pieces of
information: the number of demands, n, in the data
period, and the number of failures, x, that then
occurred.

However, more information is needed to investigate
whether the binomial model is valid. For example,
Assumption 1 assumes that p is the same on all
demands. If the data cover a number of years or a
number of systems or plants, p might not be constant
over time or the same at al systemsor plants. To study
whether this is true, the times and locations of the
demandsand failures should berecorded, or at least the
data should be partitioned into subsets, for example
corresponding to systems, plants, or years. Then the
failure and demand counts, x; and n;, should be given
for each subset.

2.3.2.3 Case Studies: Validity of Model
Assumptionsin Examples

Let us examine Examples 2.5 through 2.8 to see if the
assumptions appear to be valid.
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Example 2.5 HPCI Failures to Start

Assumption 1 says that the probability of failure on
demand is the same for every demand. If data are
collected over a long time period, this assumption
requires that the failure probability does not change.
Likewise, if the data are collected from various
plants, the assumption is that p is the same at all
plants.

In the HPCI example, the five failures do not reveal
any clear trend in time. However, one Licensee
Event Report (LER) mentions that a better-designed
switch had already been ordered before the HPCI
failure. This gives some evidence of a gradual
improvement in the HPCI system, which might be
visible with more data.

As for differences between plants, it happens that
three of the five failures occurred at a single plant.
Therefore, it might be wise to analyze that one plant
(three failures in nine demands) separately from the
rest of the industry (two failures in 50 demands). In
fact, Grant et al. (1995) did not analyze the data that
way, because they considered two types of failure to
start, and they also considered additional data from
full system tests performed once per operating cycle.
However, the high failure probability for the one plant
was recognized in the published analysis.

Assumption 2 says that the outcome of one demand
does not influence the outcomes of later demands.
Presumably, events at one plant have little effect on
events at a different plant. However, the experience
of one failure might cause a change in procedures or
design that reduces the failure probability on later
demands at the same plant. One of the five LERs
mentions a permanent corrective action as a result of
the HPCI failure, a change of piping to allow faster
throttling. This shows some evidence of dependence
of later outcomes on an earlier outcome at that plant.

Example 2.6 EDG Failures to Start

Assumption 1 says that every demand has the same
probability, p, of failure. This is certainly not true for
return-to-service tests, because such tests are
guaranteed to resultin success. If the EDG does not
start on the test, maintenance is resumed and the
testis regarded as a part of the maintenance, not as
a return-to-service test. Therefore, any return-to-
service tests should not be used with the rest of the
data.

As for the other demands, one must decide whether
the unplanned demands, operating-cycle tests, and
monthly tests are similar enough to have the same
value of p. Can plant personnel warm up or
otherwise prime the diesel before the test? Can an



operator stop the test if the EDG is clearly having
trouble, and then not consider the event as a test?
If so, the different types of demands do not have the
same p, and they should not be analyzed as one
data set. For PRA purposes, one is normally most
interested in the failure probability on an actual un-
planned demand. To estimate this, one should use
only data from unplanned demands and from tests
that closely mimic unplanned demands.

If the EDGs in the data set differ in some way, such
as having different manufacturers, this may also lead
to different values of p on different demands.
Analyzing the data while ignoring differences
between the individual EDGs will allow us to estimate
the average p, corresponding to failure to start for a
random EDG. However, this average p is not the
same as the p for a particular EDG.

Assumption 2 says that the outcome on one demand
does not affect the probability of failure on a different
demand. When the plant is very new there may be
some learning from individual failures, but when the
plant is mature, failure or success on one demand
should not change the chances of failure or success
on later demands. The only way for such
dependence to arise is if the first failure results from
a common cause. If the plant is mature and
common-cause failures are rare, then Assumption 2
is approximately satisfied.

Example 2.7 Steam binding in AFW

Assumption 1 says that every demand corresponds
to the same probability of failure. If the steam comes
from backflow through a check valve, it will build up,
and become more of a problem when the AFW
system has been unattended longer. Technically,
this is a violation of Assumption 1. However,
ignoring the differences between demands results in
estimating p for an average demand, and this may be
adequate for many purposes.

Assumption 2 says that the AFW pumps fail
independently of each other. However, steam-
binding of the AFW system was a recognized
common-cause mechanism in the 1970s and 1980s.
This means that Assumption 2 may be plausible if
interest is in the performance of a single AFW pump,
but not if interest is in an interconnected set of
pumps.

Section D-1 of Poloski et al. (1998) says that steam
binding has not been seen in 1987-1995 AFW
experience. Therefore, Example 2.7 is probably no
longer relevant, although it received great attention
at one time.
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Example 2.8 Failures of isolation valves

The causes of valve failures postulated in this
example are degradations, so the probability of
failure increases over time, violating Assumption 1.
If failures from such causes are rare, then the
increase in failure probability may not be a problem.
In general, ignoring the differences results in
estimating an average p, averaged over components
that have been allowed to degrade for different
amounts of time. This may be acceptable.

As in Example 2.7, some of the mechanisms for
valve failure are common causes, violating the inde-
pendence required by Assumption 2. The
seriousness of the violation depends on how many
multiple failures occur.

2.3.2.4 Discussion
2.3.24.1 MoreGeneral Models

The model considered above has a constant failure
probability, p. A generadization would let p be a
function of time. Such amodel is useful for analyzing
trends. Chapter 6 includeswaysto test the assumptions
of the model assumed above, and Chapter 7 includes
ways to analyze data where atrend is present.

When data come from the industry, one might consider
the differences between plants, just as for initiating
events. Ways to model such differences are discussed
in Chapter 8. The present section’ sinterest isrestricted
to p for the industry as a whole, the average of all the
plants. Of course, if the datacome from only one plant,
p refers to that plant and the issue of differences
typically does not arise.

Any mathematical model isanimperfect approximation
of the true process that generated the data. When the
data set is sparse (few demands, or few or no failures,
or few or no successes), (@) it isdifficult or impossible
to see evidence of departures from the model, and (b)
the data set istoo small to allow realistic estimation of
the parameters of amore complicated model. Whenthe
data set has many events, departures from the model
become visible, and amore complicated model may be

appropriate.
2.3.2.4.2 Non-randomness of n

One could argue that the numbers of demands in the
examples are not really fixed in advance. That is, no
one decided in advance to look at the outcomes of 59
unplanned HPCI demands. Instead, Grant et al.
decided to look at seven years of data from 23 plants,
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and they observed that 59 demands had taken place.
The response to this argument is that we are actually
conditioning on thenumber of demands, that is, dealing
with conditional probabilities assuming that 59
demands take place. Conditioning on the number of
demands enables usto focus on the quantity of interest,
p. Treating both the number of failures and the number
of demands as random is needlessly complicated, and
yields essentially the same conclusions about p as do
the simpler methods in this handbook.

In the model considered here, the number of demands
istreated asfixed, and the number of failuresistreated
as random. Sometimes, however, the number of
failuresis specified in advance and the corresponding
number of demands is random. For example, the
analyst may believe that p has been changing, and that
only the most recent history isrelevant. Inthiscase, the
analyst might decide to consider only the most recent
failures and to treat the corresponding number of
demandsasrandom. For example, if only thefour most
recent failures are included, one would count
backwards from the present until x = 4 failures were
seen in the plant records, and record the corresponding
number of demands, n, regarded as an observation of a
random variable. Thisisawaiting time model, withn
equal to thewaiting timeuntil the4th failure. Bayesian
analysis of such data is discussed briefly in Section
6.3.2.6.

2.3.3 Standby Failure

As stated in the introduction to this chapter, failure to
change state can be modeled in two ways. One way
was given in Section 2.3.2. The second way is given
here, in which the system (typically a component) is
assumed to transform to the failed state while the
systemisinstandby. Thistransition occursat arandom
time with a constant transition rate. The latent failed
condition ensures that the system will fail when it is
next demanded, but the conditionisnot discovered until
the next inspection, test, or actual demand.

2.3.3.1 Probability Model

The underlying assumption is that the transition to the
failed condition occursrandomly intime. Two settings
must be distinguished:

1. the data, the operationa experiences in the past
that allow usto estimate &, and

2. theapplication to PRA, in which the estimate of &
isused to estimate the probability that acomponent
will fail when demanded.
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These two settings are discussed in the next two
subsections.

2.3.3.1.1 Probability Mode for the Data
It is customary to consider only the simplest model.

1. Assuming that the system is operable at timet, the
probability that the system will fail during a short
time period from t to t + )t is approximately
proportional to the length of the exposure period,
)t. The probability does not depend on the
starting time of the period, t, or on anything else.

2. Failures of digtinct systems, or of one system
during distinct standby periods, areindependent of
each other.

The kind of observable data is spelled out here. Itis
obvious, but iswritten down here for later comparison
with the data for similar models.

» At times unrelated to the state of the system, the
condition of each system (failed or not) can be
observed. As a minimum, the total number of
failures and the corresponding total standby time
are observed.

The times mentioned here can be scheduled tests or
unplanned demands.

Assumption 1 is essentially the same as for a Poisson
process in Section 2.2.2. It implies that there is a
proportionality constant, &, satisfying

Dt Prt<TH#Ht+It*T>1),

where T is the random time when the system becomes
failed. Then the probability that the system is failed
when observed at timet is

Pr(systemisinfailed state at timet) =1 1 e’®. (2.3)

Thisfollowsfrom Equation 2.6, givenin Section 2.5 for
the exponentia distribution. The parameter Siscalled
the standby failure rate. It is so named because the
failed condition develops while the system is in
standby, waiting for the next demand.

2.3.3.1.2 Application of the Model to PRA

The model is used to evaluate the probability of failure
on an unplanned demand. For this, one assumes that
there are periodic tests and the unplanned demand
occurs at arandom time within the testing cycle. Then
theprobability of failure on demand isapproximated by



P &el? ,

where &is the standby failure rate and t. is the time
interval between tests.

(2.9

A more accurate expression is the average of terms
from Equation 2.3, averaging over al the possible
demand times in the test interval:

_ L ey s
P= JO (1- e*)ds
=1- (1- e )/ (M)

This equation is approximated by Equation 2.4, as can
be verified by use of the second-order Taylor
expansion:

exp(18) . 1+ (18) + (1 &)42! .

When morethan one systemisconsidered, theformulas
become more complicated. For example, suppose that
two systems (such astwo pumps) aretested periodically
and at essentially the same time. Suppose that we are
interested in the event that both fail on an unplanned
demand. Thisis:

Pr(both fail)

1 test
= [ (1-e)2ds

tteﬂ

=~ (M)’ /3

(2.5)

When more systems are involved, or when testing is
staggered, the same ideas can be applied.

2.3.3.2 Data Needed to Validate the M odel and
Estimate 8

Suppose that the standby failure rate model holds. If
the standby times are al similar, then an estimator of &
needs only two pieces of information: the number of
failures, x, in the data period, and the corresponding
total standby time, t. If, instead, the standby timesvary
substantially, then the total standby times should be
recorded separately for the failures and the successes,
as explained in Section 6.4.

To validate the model, the data could be partitioned.
Aswithinitiating events, if the datacome from various
years or plants, the data could be partitioned by year
and/or by plant, and the above information should be
given for each subset.
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2.3.3.3 Case Studies: Validity of Model
Assumptionsin Examples

Let us now examine the applicability of the model
assumptionsin the examples given above. Much of the
discussion in Section 2.3.2.3 applies here as well. In
particular, when Section 2.3.2.3 sees aviolation of an
assumption and suggests a remedy, an analogous
violation is probably present here, with an analogous
remedy.

Example 2.5 HPCI Failures to Start

Assumption 1 says that the probability of becoming
failed in a short time period is proportional to the
length of the time period, and on nothing else. As
discussed in Section 2.3.2.3, there is no clear
evidence of a trend in time. It may be, however, that
the probability of failure is higher at one plant than at
the other plants. If true, this would violate Assump-
tion 1, and suggests that the outlying plant be
analyzed separately from the others.

Assumption 2 says that failures in distinct time
periods and locations are independent of each other.
As discussed in Section 2.3.2.3, there may be a very
small amount of learning, causing fewer failures later
in the history.

Example 2.6 EDG Failures to Start

Assumption 1 says that the probability of becoming
failed in a short time period is proportional to the
length of the time period, and on nothing else.
Section 2.3.2.3 discusses different types of tests of
EDGs. That discussion is applicable here as well. If
an EDG fails on one type of test more readily than on
another type of test, Assumption 1 is violated.
Another interpretation of this situation is that the
bulleted assumption on the data is false: it is not true
that a failed condition is always discovered on a test.
Some tests discover only major failed conditions
while other, more demanding tests discover less
obvious failed conditions. Just as mentioned in
Section 2.3.2.3, if the primary interest is the
probability of failure on an unplanned demand then
one should use only data from unplanned demands
and from tests that closely mimic unplanned
demands.

Assumption 2 says that failures in distinct time
periods and locations are independent of each other.
As discussed in Section 2.3.2.3, this is probably true
if the plant is mature and if common-cause failures
are rare.
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Example 2.7 Steam Binding in AFW

Assumption 1 says that the failed-condition event is
as likely to hit the system in one time interval as in
another of the same length. As discussed in Section
2.3.2.3, steam binding can result from a gradual
buildup, and become more of a problem when the
AFW system has been unattended longer. In this
case, Assumption 1 is violated. Ignoring this fact is
equivalentto treating the average of AFW conditions.

As discussed in Section 2.3.2.3, steam binding is a
common-cause mechanism. Therefore Assumption
2, independence of distinct AFW pumps, is violated.

Example 2.8 Failures of Isolation Valves

Just as discussed in Section 2.3.2.3, the causes
listed for Example 2.3 are degradations, violating
Assumption 1. However, it may be acceptable to
ignore the changes over time, and estimation of an
average parameter 8 Also, as discussed in Section
2.3.2.3, some of the mechanisms for valve failure are
common causes, Vviolating the independence
required by Assumption 2. The seriousness of the
violation depends on how many multiple failures
occur.

2.3.4 Comparison of the Two Modelsfor
Failureto Change State

Two models have been presented for failure to change
state, the failure-on-demand model and the standby-
failure model. Several aspects of the models are
compared here.

2.3.4.1 Easeof Estimation

Onegreat appeal of the standby-failuremodel isthat the
analyst does not need knowledge of the number of
demands. Standby time is normally much easier to
obtain than a count of demands.

2.3.4.2 Usein PRA Cut Sets

Thetwo models differ in their application to cut setsin
a PRA model. Consider failure of two redundant
components, each having the same probability of
failure. Whenthefailure-on-demand model isused, we
have

Pr(both fail) = p? = [Pr(one fails)]?.
On the other hand, when the standby-failure model is

used and the two components are tested periodically at
the same time, with timet between tests, Equations 2.4
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and 2.5 show that
Pr(onefails) . &,4/2

Pr(both fail) . (&es)?/3

so that

Pr(both fail) ... [Pr(one fails)]?.
Thisfact is often ignored.
2.3.4.3 Estimates Obtained

The two models can produce different estimates of
basic event probabilities. For example, supposethat an
EDG is tested monthly by starting it. In 100 monthly
tests, 2 failureshave been seen. A simpleestimate of p,
the probability of failure on demand, is 2/100 = 0.02.
A simple estimate of 8, the standby failure rate, is
0.02/month. Now suppose that abasic event in a PRA
is that the EDG fails to start, when demanded at a
randomtime. Based on the estimate of p, the estimated
probability of the basic event is

Pr(EDG failsto start) =p . 0.02.

Based on the estimate of & and Equation 2.4, the
estimated probability of the basic event is

Pr(EDG failsto start) . &/2
- (0.02/month)=(1 month)/2 = 0.01 .

The two models give estimates that differ by a factor
of two, with the failure-on-demand model being more
pessimistic than the standby-failure model. Thereason
is simple:  All, or virtualy al, of the failures and
demands in the data occur at the end of test intervals.
However, unplanned demands might occur at any time
between tests. The standby-failure model saysthat de-
mands soon after a successful test have smaller
probability of failure. The failure-on-demand model
says that al demands have the same probability of
failure.

The differences can be more extreme. For example,
suppose that two EDGs are tested monthly, and tested
at essentially the same time rather than in a staggered
way. According to the failure-on-demand model, the
probability that both EDGs fail to start is p?, which is
estimated by (0.02)%. On the other hand, according to
the standby-failuremodel, Equation (2.5) showsthat the
same probability is approximately (&.)%/3, which is
estimated by (0.02)%/3. Thetwo models give estimates
that differ by afactor of three. More extreme examples
can be constructed.



It might be mentioned that these numerical differences
between estimatesdisappear if only unplanned demands
areused inthedata. However, unplanned demandsare
rare, and so most analysts prefer to use test data if
possible.

2.3.4.4 A Mode Involving Both Terms

Themodel described next postulatestwo reasonsfor the
observed randomness of failures.

One reason for the randomness of failures is that
demands are not all equally stressful. When ademand
occurs that is unusualy harsh, the system will fail.
From the viewpoint of an outside observer, it appears
that failuresjust occur randomly with some probability
p, but the underlying cause is the variability in the
severity of the demands.

The other reason for randomness of the failuresis that
the unattended system degrades, and becomes
inoperable at unpredictabletimes. Thisissimplifiedin
the standby-failure model by supposing that the system
changessuddenly from perfectly operableto completely
failed, with thesetransitionsoccurring at random times.
This leads to the standby-failure model, with failure-
transition rate 8, and with probability of failure & at
timet after the last system restoration.

If just one of the two mechanisms described above is
considered, we are led to either the failure-on-demand
model or the standby-failure model. It is possible,
however, to construct amodel that involves both terms,
corresponding to the two kinds of variation. In this
two-parameter model, the probability of failureisp + &
at timet after thelast systemrestoration. (For example,
see Section 5.2.10 of Samanta et al. 1994.)

Lofgren and Thaggard (1992) state “it is virtualy
impossible to directly determine from work
maintenance record descriptions whether the
component has failed from standby or demand stress
causes.” However, they look for patterns in datafrom
EDGs and motor-operated valves (MOVs) at a small
number of plantsthat use different test intervals. Their
data suggest that the standby-failure-rate model is most
appropriate for MOV failures, and the two-parameter
model is best for EDGs.

Inasimilar spirit, the T-Book (TUD Office and Porn
Consulting, 2000) uses the two-parameter model for
many components. The T-Book does not attempt to
identify which mechanism appliesto whichfailures, but
instead estimates the two parameters from overal
patterns in the data. Some of the resulting estimates
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have large uncertainties; for example, at atypical plant
the estimate of p for EDG failure to start has an error
factor of about 13. For components that cannot be
analyzed in this way, the T-Book uses the standby-
failure model. For details, see Porn (1990).

2.3.45 ChoosingaMode

No consensus exists among PRA workers as to which
model is most advantageous. In particular, the typical
mechanisms of failure are not understood well enough
to justify atheoretical basis for amodel. Most current
work uses one of the two simple models given here:
failure on demand or standby failure. Therefore, this
handbook presents only these two models. The user
may choose between them.

24 FailuretoRunduringMission

Aspects of this type of failure closely resemble the
initiating events of Section 2.2. One important
differenceisinthe kind of data normally present. The
difference is summarized here.

Example 2.4 of Section 2.2 is an example of continu-
ously running components (temperature sensor/trans-
mitters) that occasionally failed to run. When a
component failed, it was repaired or replaced in a
relatively short time, and resumed operation. That is,
the component was repairable. The present section
considers components or systems that do not run
continuously. Instead, they are occasionally demanded
to start, and then to run for some mission time. If they
fail during the mission, they arenonrepairable, that is,
they cannot be repaired or replaced quickly. Two
points deserve clarification:

»  Some failures may be recoverable. They would
not be modeled as failures in the sense of causing
mission failure. Unrecoverable failures cause
mission failure, however.

e Given enough time, amost any system can be
repaired. During a mission, however, time is not
available. Because the component or system
cannot berepaired within thetime constraints, itis
called “nonrepairable.”

As stated earlier, the word system is used in this
handbook for any piece of hardware for which dataare
taken. In particular, componentsand trainsare kinds of
systems.
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241 Examples

Here are two examples of failures to run during
missions.

Example 2.9 EDG failures to run

Grant et al. (1999b) report that in 844 demands of
30 minutes or more for EDGs to run, there were
approximately 11 unrecovered failures to run in
the first 30 minutes. The count is approximate
because a few failure times were not given and
had to be inferred.

Example 2.10 AFW turbine train failures to run

Poloski et al. (1998) report that in 583 unplanned
demands of AFW system turbine trains, the train
failed to run 2 times, and the total running time
was 371 train-hours. The information is taken
from LERs, only 17% of which report running
times for the train. The total running time of 371
hours is an extrapolation from the LERs with
reported run times.

These examples are typical, in that hardly any of the
demands to run resulted in a failure. Therefore, for
most demands the time when failure would eventually
have occurred is unknown.

2.4.2 Probability Model

In principle, the times to failure are durations.
Section 2.5 deals with duration data, in the context of
recovery times. That section mentionsvarious possible
distributions of timeto failure, of which the simplestis
the exponential distribution.

Data for this section differ from data of Section 2.5,
however, because nearly all of the observed times in
this section are truncated before failure. This is
illustrated by the above examples. Therefore, the full
distribution of the time to failure cannot be observed.
In Example 2.9, no information is given about the
distribution of failures times after the first 30 minutes.
In Example 2.10, the average run time was only 38
minutes, and most AFW missions lasted for less than
one hour. In such cases the exponential distribution,
restricted to the observed time period, is a simple,
reasonabl e approximation of the observable portion of
the distribution.
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Two assumptions are made concerning the physical
process:

1. Assuming that no failure has occurred by timet,
the probability that a failure will occur in a short
time period t to t + )t is approximately propor-
tional to thelength of the exposureperiod, )t. The
probability does not depend on the starting time of
the period, t, or on anything else.

2. Failures of digtinct systems, or of one system
during distinct missions, are independent of each
other.

The kind of observable datais as follows:

e For each observed mission, the run time is
observable. Also, it is known whether the run
terminated in failureor in successful compl etion of
the mission. Asaminimum, thetotal run time and
the number of failuresto run are observed.

Assumption 1 implies that the time to failure is
exponentially distributed with parameter 8 The inter-
pretation of & is that if the system is running, the
probability of failurein the next short interval of length
dtisapproximately &)t. Thatis

Dt Prt<TH#Ht+It*T>1),

where T istherandomtime until failure. When defined
thisway, 8issometimescalled thefailurerate, orrate
of failuretorun. Many authors use the term hazard
rate, denoted by h, and discussed in Appendix A.4.4.

Note, the definition of & is different for repairable
systems (Section 2.2) and nonrepairable systems (the
present section), even though it is represented by the
same Greek letter and is called “failure rate” in both
cases. See Thompson (1981) for a reasonably clear
discussion of the subtle differences, and the glossary of
this handbook for a summary of the definitions. The
topic is discussed further in Appendix A.4.4.

Itisinstructiveto comparethe modelsfor failureto run
and standby failure. The physical processisessentially
identical, but the observable data differs in the two
models. That is, Assumptions 1 and 2 in the two
sections agree except for small differences of wording.
However, the time of failure to run is observable,
whereas the time of transition to a standby failure is
never known.

It may also be somewhat instructive to compare the
Assumptions 1 and 2 here with the Assumptions 1-3 of
the Poisson processin Section 2.2.2. For the standby-



failure model and the failure-to-run model, Assump-
tions 1 and 2 do not explicitly include an assumption
ruling out simultaneous failures. The reason is that
simultaneous failures are ruled out by the other two
assumptions: it is not meaningful for a system to fail
twice simultaneously; and distinct systems are assumed
to fail independently of each other, and therefore not
exactly simultaneously.

2.4.3 Data Needed to Validate the M odél
and Estimate 8

Suppose that the time to failure has an exponential
distribution. Then, any reasonable estimator of &needs
only two pieces of information: the total running time,
t, in the data period, and the number of failuresto run,
X, that occurred then.

However, more information is needed to investigate
whether the exponential distributionisvalid. Assump-
tion 1 saysthat &is constant during the mission. To
investigate this, the analyst should know the failure
times, that is, how long the failed pumps ran before
failing. The anayst should aso know the mission
times, that is, how long the system ran when it did not
fail; often, however, this information is not recorded
and can only be estimated or approximated.

Implicit in Assumption 1 isthat &is the same over all
the years of data, at all the plants where the data were
collected. To investigate this, the data should be
divided into subsets, corresponding to the different
plants and years. Then the failure count and running
time, x; and t;, should be given for each subset. Thisis
the exact anal ogue of what wassaid in Section 2.2.3 for
initiating events.

244 Case Studies: Validity of Model
Assumptionsin Examples

Consider now whether the assumptionsof themodel are
plausible for the two examples.

Example 2.9 EDG Failures to Run

Assumption 1 says that a running EDG is as likely to
fail in one short time interval as in any other time
interval of the same length. That is, the EDG does
not experience burn-in or wear-out failures. The
reference report (Grant et al. 1999b) says that this is
not true over a 24-hr mission. Indeed, that report
divides the EDG mission into three time periods (first
half hour, from one-half hour to 14 hours, and from
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14 to 24 hours) to account for different failure rates
during different time periods. Within the first half
hour, however, the data do not give reason for
believing that any short time interval is more likely to
have a failure than any other time interval.
Therefore, Assumption 1 can be accepted.

Assumption 2 is violated by common-cause failures.
Itis also violated if a failure’s root cause is incorrectly
diagnosed, and persists on the next demand. If
these two conditions are rare the assumption may be
an adequate approximation. More subtle dependen-
cies are difficult to detect from data.

Example 2.10 AFW Turbine Train Failures to Run

Assumption 1 says that a running turbine train is as
likely to fail in one short time interval as in any other
time interval of the same length. The data are too
sparse — only 2 observed failures — to confirm or
refute this assumption. The data are also too sparse
to confirm or refute Assumption 2, although failures
in separate plants are virtually certain to be
independent. In such a situation, it is common to
accept the simple model as adequate. A more
complicated model is justified only when a larger
data set is available.

2.45 Discussion

The exponential time to failure can also be derived as
the time to first failure in a Poisson process of
Section 2.2. Thisis possible because the time to first
failureand thetimes between subsequent failuresareall
exponentialy distributed when the failures follow a
Poisson process. The present context is simpler,
however, because the process ends after the first event,
failureto run. The Poisson-process assumptions about
hypothetical additional failures are irrelevant.

2.5 Recovery Timesand Other
Random Duration Times

This section is about modeling of time data. Often, a
measurement of interest isarandom durationtime, such
asthe time required to return afailed systemto service
or the lifetime of a piece of hardware. The distinction
between random duration times hereand eventsintime
in Sections 2.2 and 2.4 isthat herethe individual times
are measured on a continuous scale with units such as
minutes or hours, while the earlier data sets involve
discrete counts of the number of events occurringin a
total length of time.
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251 Examples

Here are some examples involving random duration
times. They are only summarized here. Actua exam-
ples, with lists of durations times, will be analyzed in
Chapter 6.
Example 2.11 Recovery times from loss of
offsite power

A plant occasionally loses offsite power. When
this happens, the plant reports the time until
power is restored. Atwood et al. (1998) present
such durations for LOSP events in 1980-1996.

Example 2.12 Repair times for turbine-driven
pumps

A turbine-driven pump must occasionally be taken
out of service for unplanned maintenance. The
duration of time out of service for maintenance
may be extractable from maintenance records.

Example 2.13 Time to failure of a component

A typical power plant will have many individual
components such as compressors. When a
component is put into service, it operates
intermittently until it fails to perform its required
function for some reason. Hgyland and Rausand
(1994) give an example of such data.

Example 2.14 Times to suppress fires

When a fire occurs in a nuclear power plant, the
time until the fire is suppressed is of interest.
Nowlen et al. (2002) report on analysis of such
suppression times. One difficulty is that the time
of fire onset often is not exactly known.

Example 2.15 Gradual degradation until failure

Examples 2.7 (steam binding) and 2.8 (failure of
isolation valves) involve gradual degradation,
which builds up until the system is inoperable.
The time until the system is inoperable can be
modeled as a duration time.

The common element in these examples is a duration
time that variesin an unpredictable way. In Examples
2.11and 2.12, therecovery timeiscomposed of several
factors such as the time to diagnose, perform and test
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repairs, and the time to complete documentation
required before returning the plant to normal operating
conditions. Example 2.13 is a failure-to-run example,
similar to those of Section 2.4. This example differs
from that of Section 2.4, however, because here it is
assumed that virtually all of the times to failure are
recorded. In Section 2.4, onthe other hand, most of the
systemsdid not fail during thetest period or operational
mission. The severe truncation of the datain Section
24 meant that only a simple model could be
considered. The more complete data here alows
analysis of a more complex model. Example 2.14 is
complicated by the lack of exact knowledge of the
duration time. Finally, Example 2.15 gives aredlistic
conceptual way to model the gradual degradations
encountered in Section 2.3.1, athough good data are
unobtainable.

All five examples involve a duration time that is
uncertain due to random factors. Consequently, the
duration times are modeled as continuous random
variables.

25.2 Duration-Time Models

Theduration, T, israndom, following some probability
distribution. Two assumptions are made about the
process:

1. Each duration is statistically independent of the
others, and

2. All the random durations come from the same
probability distribution.

The data description is simple:

e Theindividual durationsare observable. Asabare
minimum, the number of durations and the total
duration time are observed.

Assumptions 1 and 2 can be summarized by saying that
the durations are independent and identically
distributed. Independence means that one duration
doesnot influencethe probability of any other duration.
The assumption of identical distributions means that
each random duration is as likely as any other to be
long or short. If the durations are from distinct
systems, the systems are assumed to beidentical and to
act independently. If the durations are in sequence, as
for a system that alternates being up and down, the
assumption impliesthat no learning or long-term aging
takes place, and that each repair restores the system to
acondition as good as new. Such aprocessiscalled a
renewal process.



Theassumptionsdo not requireaparticular distribution
for the time between events. The most important such
distributions in PRA applications are:

lognormal,
exponential,
Weibull, and
gamma.

These distributions are summarized in Appendix A.7.
An important part of the data analysis consists of
deciding on the form (or severa plausible forms) of the
distribution. Thiswill be discussed in Chapter 6. For
now, we simply note that these and other distributions
are possible.

There are different ways to specify a probability
distribution, and the next material summarizes some of
the concepts: their definitions, how to interpret them,
and how they are related to each other. The data-
analysis techniques of Chapter 6 will use these ways of
characterizing distributions. Theusual conventionisto
denotetherandom variablesusing capital letters, T, and
observed times as lower case, t. The letter T is used,
rather than some other letter such as X, because the
random quantities are times. As seen from the
examples, the durationsmay betimesto repair, timesto
failure, or other times. However, the concepts and
formulas are valid for any application.

Thecumulativedistribution function (c.d.f.) of areal-
valued random variable T is defined as

F(t) = Pr(T# 1)

for al rea numbers t. The name is sometimes
abbreviated to distribution function. Thec.d.f. isthe
probability that the random variable T will assume a
value that is less than or equal to t. The c.d.f. isa
monotonically increasing function of t, with thelimiting
properties F(0) = 0 and F(+4) = 1. [For random
variables that, unlike durations, can take negative
values, thelimiting propertiesare F(14) = 0 and F(+4)
= 1. That genera case has few applications in this
handbook.]

The distribution is commonly used to characterize the
lifetimes, or recovery times, or some other kind of
durations, of a whole population of systems. The
population might be alarge set of identical systemsthat
are operating in similar applications and with durations
that vary due to random influences. F(t) isthefraction
of items that have durationst or less, in a hypothetical
infinite population.

2-17

Basic Event Probability Models

A related function, denoted by f(t), is caled a
probability density function (p.d.f.) for acontinuously
distributed positive-valued random variable T. It is
related to the c.d.f. by

f = F and
t t
() t ()

F(t) = J(t) f (u)du

The variable u is a dummy variable of integration, and
t is the upper limit of the integral. An example of a
p.d.f. and the associated c.d.f. are shownin Figure 2.1.

(@)

Time t

Figure 2.1 Probability density function (p.d.f.) and
cumulative distribution function (c.d.f.).

It follows that probabilities corresponding to
occurrences in a small interval of time are
approximately proportiona to the p.d.f.,

Prt<T#t+)t) . f()t.

Therefore, the ordinate of a p.d.f. has units of
“probability density” and not probability (as for a
c.df). Thus, a p.d.f. determines how to assign
probability over small intervals of time. Now consider
an arbitrary interval fromato b. In this case we have

Pr(a<st)=j:f(t)dt .

The simplest distribution is the exponential distribu-
tion. It arises when Assumption 1 of Section 2.4.2 is
satisfied. (That assumption isphrased asif Tisatime
until failure.) Inthat case, the probability distribution
isexponential, and determined by asingle parameter, 8.
The p.d.f. and c.d.f. are given by

f(t) = 8o’

F)=11¢e'?. (2.6)
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When deriving the distribution mathematically from
Assumption 1, it is necessary to assume that F(0) = O,
that is, failures at time O have zero probability.
Although not stated explicitly, this assumption is
implicit in the context of failure to run, because any
failures at time O would be counted as failures to start,
not failures to run.

253 Data Needed to Estimate
Distribution of Durations and
Validate M oddl

In general, asample of observed durationsis needed to
estimate the distribution of duration times. These
durations must independent and identically distributed,
that is, they must be generated by a process satisfying
the two assumptions given at the beginning of Section
25.2.

The special casewhen thetimesare assumed to have an
exponential (8 distribution is simpler.  Only the
number of durations and the total duration time are
needed to estimate &. However, the individual
durations are still needed to investigate whether the
distribution is exponential or of some other form.
Incidentally, when the distribution is assumed to be
exponential, the model given here differs from the
standby-failure model (Section 2.3.3.1.1) and from the
failure-to-run model (Section 2.4.2) only by the kind of
data that can be observed.

To validate whether the distribution is the same for all
the data, extrainformation should be recorded for each
duration, the relevant circumstances of each duration.
The circumstances of interest arethosethat might affect
the durations, such as time of the event, system
location, and system condition just before the event.

254 CaseStudies: Validity of Model
Assumptionsin the Examples

Examples 2.11 through 2.13 all appear to satisfy the
assumptions of Section 2.5.2. Example 2.14 also
does, except that the durations are not observed
exactly.

In each case, all the distributions come from some
distribution. Discovering the form of that distribution
is a task for the data analyst.

One might ask whether the durations are statistically
independent. For example, does a long repair time
for a turbine-driven pump add an extra benefit to the
pump, so that the next few repair times will be short?
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One might also ask, for each example, whether the
durations all come from the same probability distribu-
tion. For example, if the data cover a period of
years, has there been any long-term learning, so that
recovery times or repair times tend to be shorter than
at the start of the data period? Are different
durations associated with different systems for the
turbine-driven pumps, with different causes of loss of
offsite power, or with different kinds of fires?

The above are questions that could be investigated
during the data analysis, if enough durations have
been observed.

Example 2.14 is complicated by lack of exact
measurements of the durations. Bounds can be
given, and the analysis must be based on these
upper and lower bounds rather than on exact times.

Example 2.15 is different because the durations are
not observable at all. It might be theoretically
interesting to model the time until the system is in a
failed condition as a duration, but there is no monitor
on the pump or valve that says, “At this time the
system just became inoperable.” Therefore, the
durations are not directly observable, not even in
principle. Therefore, the methods of this handbook
are not applicable to this example.

Fortunately, degradation mechanisms have become
minor contributors to risk. When a degradation
mechanism is recognized as important, the natural
response is not to collect data to better estimate the
rate of degradation. Instead, the natural response is
(a) to shorten the interval between preventive
maintenance activities, and so to identify and correct
incipient degradation, or (b) to modify the plant to
mitigate or eliminate the problem. Examples are the
apparent elimination of steam-binding in AFW
pumps, mentioned above, and of intergranular stress
corrosion cracking (IGSCC) in BWR piping (Poloski
et al. 1999a, Appendix J).

2.6 Unavailability

This section considers test-and-maintenance
unavailability, correspondingtointentional removal of
the equipment from service for testing and/or
mai ntenance. This section does not consider
unavailability resulting from the hardware being in an
unrecognized failed condition; that topic wastreated in
Section 2.3.3.

The discussion here is presented in terms of trains,
athough other hardware configurations, such as
individual components, could be considered equally
well. A standby train, such as the single train of the
HPCI system or a motor-driven train of the AFW
system, isnormally availableif it should be demanded,



but sometimes it is out of service for planned or
unplanned maintenance. The event of a train being
unavailableis called an outage, and the length of time
when it isunavailable is called an outage time or out-
of-servicetime. Inadataset, the exposuretimeisthe
time (e.g. number of hours) when the train should have
been available. The unavailability is the long-term
ratio of outage time to exposure time — the fraction of
time that the system is out of service when it should be
available. More precisely, the planned-maintenance
unavailability is the fraction of time that the systemis
out of servicefor planned testing and maintenance, and
theunplanned-maintenanceunavailability isdefined
similarly. Insummary, outagetimesare random but the
unavailability is a parameter, an unknown constant,
denoted here by q. Subscripts such as “planned” and
“unplanned” can be attached to q for clarity if needed.

2.6.1 Example

Example 2.16 CVC unavailability for test and
maintenance

Train outages of various durations occurred
during 15 calendar months at a plant with two
trains in the chemical and volume control (CVC)
system. For each month, the outage durations
are given by Atwood and Engelhardt (2003).

A way to picture the status of a standby train or other
repairable system usesastate variable, defined as S(t)
= 1if the sysemisup at timet, and St) = 0 if it is
downattimet. A particular systemhistory isillustrated
in Figure 2.2, from Engelhardt (1996). This figure
shows when a particular system was operating (S= 1)
or shut down (S= 0). A nominaly identical system
would have a somewhat different history for the same
period, or the same system would have a different
history over a different time period of the same length.

0 T
0 500

T T T T
1500 2000 2500 3000

Time ¢

T
1000

Figure2.2 Uptime and downtime statusfor one system.

As stated above, the long-term fraction of time when
the systemisdown is called the system unavailability.
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2.6.2 Probability Model

The assumed underlying model is an alternating
renewal process. At any pointintime asystemisin
oneof two states: “up” or “down,” correspondingin our
application to being available or out of service.
Initialy, the system is up, and it remains up for a
random time Y;; it then goes down, and stays down for
arandomtime Z,. Then it then goesup for atimeY,,
and then down for a time Z,, and so forth. The
assumptions needed for the data analysis methods in
Chapter 6 are the following:

1. Therandom variables; have one distribution that
is continuous with a finite mean, and so do the
random variables Z,.

2. All the random variables are independent of each
other

Thesum of thedown times, EZ;, isthetotal outagetime
inthe data. The sum of all thetimes, GY; + EZ, isthe
exposure time — the time when the system should be
available. Time when the systemis not required to be
available is not counted in either the up time or the
down time.

Two kinds of data can be considered:

* Detailed data: the onset timeand duration of each
individual outage are recorded, aswell asthetotal
time when the train should have been available;
and

e Summary data. Data totals are given for
“reporting periods,” such ascalendar months. For
each reporting period, the total outage time and
exposure time are recorded.

Section 6.7 describeshow to analyze both types of data.

2.6.3 Data Needed to Validate the Mod€
and Estimate g

Theunavailability, g, can be estimated from either kind
of data. Enough data should be collected so that any
periodic, lengthy, planned outages are appropriately
represented — neither over-represented nor under-
represented.

In addition, if summary data are used, the methods
given in Chapter 6 combine reporting periods into
larger subsets of the data, at the very least so that the
aggregated subsets do not contain outage times of zero.
Therefore, a large enough set of summary data is
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needed so that it consists of at least two (as a bare
minimum) subsets of approximately equal exposure
time, with each subset containing nonzero outage time.

To validate the model, any information that might be
related to unavailability should be recorded. For
example, if a motor-driven pump has most of its
scheduled maintenance during the plant’s refueling
outages, and the pump’ savailability during shutdownis
of interest, then the data should indicate which outages
and exposure times correspond to reactor shutdown.
Separate analyses will probably need to be performed
for thetime when the reactor isup and when the reactor
is down, to keep Assumption 1 from being violated.

264 Case Study: Validity of Model
Assumptionsin Example

The ideas here are applicable to virtually any system,
with Example 2.16 being just one example.
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The trains may undergo periodic, infrequent, lengthy
testing and maintenance, and less lengthy testing and
maintenance at more frequent intervals.  This
periodicity of planned maintenance means that
Assumption 2 cannot be exactly true. The lengthiest
outages tend to be evenly spaced, not random as
assumed. However, more realistic assumptions would
be very difficult to work with.

It seems plausible that this deterministic periodicity
should lead to conservative estimates. That is, analysis
methods that assume pure randomness will tend to
overestimate the variance, so that the resulting
uncertainty in q is overestimated. However, this
conjecture has not been carefully investigated, and the
15 months of datain Example 2.16, analyzed in Section
6.7, do not support the conjecture.

Assumption 1, on the other hand, issurely correct. The
distributionsare continuous, and it isinconceivabl e that
the durations for an operating power plant would have
infinite means.



3. COMPONENT FAILURE AND BOUNDARY DEFINITIONS

3.1 FailureDefinitions

While the terms “faults’ and “failures’ are casually
used interchangeably, in the context of fault tree
analysis these terms have more distinct meanings.
Thus, for data analysis, it is necessary for one to
understand the distinctions. Generaly speaking, al
failuresarefaults, but not al faultsarefailures. To put
it another way, failures comprise a subset of the larger
set of faults. For probabilistic risk assessment (PRA)
purposes, failur esareregarded asbasi ¢ (and undesired)
events which:

* render a component, subsystem, or system
incapable of performing its intended function,

* represents a basic fault tree input that is not
analyzed further, and

* require numerical estimates if quantification is to
be performed.

Faults, on the other hand, are higher order events
(representing the occurrence or existence of an
undesired state of a component or set of components)
which areanalyzed further, and ultimately resolved into
their congtituent failures (Breeding, Leahy, and Y oung
1985; ANS and |IEEE 1983; and Vesely et al. 1981).

Thefailuresmodeled in PRA can have many causes or
mechanisms. For example, failure of amotor-operated
valve (MOV) to open on demand can occur due to
physical problems with the valve (stem failure, disc
separation, etc.), problems with the motor operator
(motor failure, control circuit failure, breaker failure,
etc.), or due to loss of motive or control power. In
addition, the MOV may be unavailable due to test or
maintenance on its congtituent parts. As such, each
failure (i.e., basic event) isthe sum of the contributions
from each piece-part included in the component
boundary. Thus, it is critica to define what the
component boundary is in order to get the right data.

3.2 Component Boundary
Definitions

In order to collect failure data for components, it is
necessary to define component boundaries by
specifying the scope of each item to be considered asa
single entity. The PRA model and the data collection
should be coordinated so that the boundaries of the
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components are defined identically. For example, all
piecesof an MOV aretypically considered to be part of
a single “component” when collecting reliability data
even though the valve consists of various piece parts
(e.q., electric motor, gearbox, limit switches, torque
switches, reversing contactsand coils, stem, disc, valve
body, etc.) that may be separately identified in the plant
maintenance records. PRAS typically do not model
failures of every switch, relay, or contact in a control
circuit of apump because that type of detail is difficult
to obtain from the plant data. Instead, failures of these
components are typically included with actual failures
of the pump to establish a pump failure rate.

If generic data sources are used, it becomes the
responsibility of the anayst to ensure that the
component boundary definitions used in the generic
data source are compatible with the boundary
definitions used by the PRA being performed.

Some typical examples of component boundaries are
shown in Table 3.I. The boundaries of a component
should include all components specific to the
component. However, the component boundary should
not include piece-parts that are shared with other
components modeled in the PRA. For example, the
component boundary for emergency-actuated valves
commonly includesthevalve control circuit. However,
the components needed to generate an actuation signal
that initiates multiple components modeled inthe PRA
should not be included as part of that specific valve
boundary. Similarly, adiesel generator boundary will
typicaly include the fuel day tank but the fuel oil
transfer pumps are not included since they are required
for operation of all the plant’s diesel generators.

3.3 Failure Severity

The raw data for a specific component will contain
some events not relevant to the component failure
modes being analyzed. These events can be screened
from further analysis. Some of the events will be
component failures that should be included in the data
assessment. The type of component failures will
determine how they are classified and subsequently
used to generate the required component failure data.

Component mal function eventsarecommonly classified
into one of the following three failure severity
categories:
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Table 3.1 Examples of component boundaries.

Component Component Boundary
Diesel The diesel generator boundary includes the generator body, generator actuator, lubrication
Generators system (local), fuel system (local), cooling components (local), startup air system, exhaust

and combustion air system, individual diesel generator control system, circuit breaker for
supply to safeguard buses and their associated local control circuit (coil, auxiliary contacts,
wiring, and control circuit contacts) with the exception of all the contacts and relays which
interact with other electrical or control systems.

Motor Pumps

The pump boundary includes the pump body, motor/actuator, lubrication system cooling
components of the pump seals, the voltage supply breaker, and its associated local control
circuit (coil, auxiliary contacts, wiring, and control circuit contacts).

Turbine-Driven
Pumps

The turbine-driven pump boundary includes the pump body, turbine/actuator, lubrication
system (including pump), extractions, turbopump seal, cooling components, and local turbine
control system (speed).

M otor-Operated
Vaves

The valve boundary includes the valve body, motor/actuator, the voltage supply breaker and
its associated local open/close circuit (open/close switches, auxiliary and switch contacts, and
wiring and switch energization contacts).

Air-Operated The valve boundary includes the valve body, the air operator, associated solenoid-operated

Vaves valve, the power supply breaker or fuse for the solenoid valve, and its associated control
circuit (open/close switches and local auxiliary and switch contacts).

Fans The fan boundary includes the fan, the voltage supply breaker, and its associated control
circuit (open/close switches and local auxiliary and switch contacts).

Batteries The battery component boundary typically includes just the battery. Battery chargers are
modeled as separate components.

Bus Circuit A bus circuit breaker boundary includes the breaker and its associated control circuit

Breakers (open/close switches and local auxiliary and switch contacts).

e catastrophic failures,
*  degraded failures, and
* incipient failures.

A catastr ophic (complete) failureisonethat prevents
the component from performing its mission as defined
in the PRA (Whitehead 1993). Catastrophic failures
require some kind of repair or replacement action on
the component in order to restore the component to
operability. For example, avalvethat failsto open due
to avalve operator mechanical failureisacatastrophic
failure.

A degraded failure is such that a component can
perform its mission, but at less than the optimum
performance level (Whitehead et a. 1993). An
incipient failure is such that there is no significant
degradation in performance but there are indications of
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a developing fault (Whitehead et al. 1993). The
difference between the two is generally a matter of
severity. For example, an event involving pump shaft
vibration indicates possible damage to the pump
bearings. Severe vibration may be considered as
degraded failure if the pump produces less than
maximum flow. Shaft seizure or other failures could
occur within a few hours if the pump remains running
and thus would likely be removed from operation for
corrective maintenance. In contrast, minor vibration
may not result in degraded flow. Thiswould thusbean
incipient failure. The significance of this event is that
it also could result in remova of the pump from
operation for inspection, lubrication, or some other
corrective action. Information about the types of
repairs made, the parts replaced, and the urgency of the
repairs often provides important insight about the
severity of these two types of component failures.



Although both degraded and incipient failures will
typically lead to a corrective action, the corrective
action may or may not make the component unavailable
to perform its function. For example, maintenance on
the operator of a valve that is normally open will not
lead to the unavailability of thevalveif itisrequired to
be open for system operation. This illustrates the
importance of ascertaining from event records the
modes of acomponent operation that acorrectiveaction
would prevent.

Sometimes the event information is so unclear and
incomplete that a definite classification of the severity
of acomponent malfunction event is not possible. For
example, Modeh and Apostolakis (1985) cites one
maintenance work request issued at a nuclear power
plant that described the problem as follows: “Check
valve RHR-V-1A isleaking badly.” The maintenance
foreman’s description of the corrective action read:
“Fixed it, not leaking anymore!”  No further
information was available. From the description given,
one cannot say for sure whether the leak wasinternal or
external, or whether it was large enough to result in
functional failure of the check valve.
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Unfortunately, the above example is not uncommon.
Descriptions of the malfunctions and repairs are often
very brief. The data analyst, then, is faced with the
difficult task of deciding whether to call amalfunction
afailure or not. The inability to distinguish between
severity levelsof failuresisparticularly important asthe
difference between the frequencies of catastrophic and
degraded modes of failures can be significant.
Therefore, in the absence of sufficient information, the
conservative assumption could be made that all such
events be recorded as catastrophic failures.
Unfortunately, conservative categorization of uncertain
events can lead to significantly higher failure rates.

Ultimately, the definition of failure from the system
analysisdecidesthe classification of thedata. Thus, the
failure of acomponent must match the definition of the
failure as described in the PRA model. A component
must fail to perform its function as defined in the
model. For example, a relief valvethat opensat 1,115
psig instead of the required 1,110 psig is not failed,
although it may be described asfailed by the governing
technical specifications, and a pump that delivers 645
gpminstead of therequired 700 gpmisnot failed if 645
gpm is sufficient for the function that it is required to
perform.
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4. DATA SOURCES

Two types of data sources can be utilized to produce
the various parameter estimates that are needed in a
probabilistic risk assessment (PRA). This chapter
identifies and discusses these two data sources.
Section 4.1 identifies and discusses plant-specific data
sources. Section 4.2 does the same for generic data
SOUrces.

4.1 Plant-Specific Data Sour ces

Use of plant-specific data in a PRA produces risk
estimates that reflect the actual plant experience.

The scope of a plant-specific data analysis is
determined by the events that are included in the PRA
models. In general, plant-specific data are generally
reviewed for the following types of events:

1. Theaccidentinitiatingeventsanalyzedinthe PRA.

2. The components included in system models
(generally fault trees). For components the
definition includes the component boundary and
fallure mode. For unavailabilities due to
maintenance or testing it is necessary to know
whether the unavailabilities are to be specified at
the component, segment, train, or system level.

3. Somerecovery eventsincludedinthe PRA models.
Although most recovery events are analyzed using
human reliability anaysis, the probabilities of
some events can be based upon a review of
operating experience.

Once the data needs are identified, the sources of raw
data at the plant are identified. In most cases, the
information needed may have to come from multiple
sources. For example, identification of maintenance
events and their duration may come from a control
room log, but other sources such as maintenance work
requests may be required to determine other
information such as whether a component had
experienced a catastrophic or degraded failure.

There are many sources of raw data at a nuclear power
plant. Different plants have different means of
recording information on initiating events and
component failure and maintenance events. Since no
one source exists at anuclear power plant that contains
al the necessary data, different sources must be

reviewed. The easeinwhichthe plant-specific datacan
be interpreted and the subsequent quality of the
resulting parameter estimatesare afunction of how well
the plant personnel recorded the necessary information.

Basic requirements associated with raw data sources
and some typical sources of raw data available at
nuclear power plants are identified in the following
sections.

4.1.1 Requirementson Data Sources

There are avariety of data sources that exist at a plant
and can be used in adataanalysis. However, there are
some basic requirements that these raw data sources
should meet in order to be useful. Some typical
requirements, some of which were suggested in EPRI
TR-100381 (EPRI 1992), are delineated below.

4.1.1.1 Initiating Events

For reportson initiating eventsit is essential to include
the status of those systems that would be impacted asa
result of theevent. Thisistypically not aproblemsince
the Licensee Event Report (LER) that isrequired to be
filed with the Nuclear Regulatory Commission (NRC)
following a plant trip usualy contains this type of
information. It isaso common for utilitiesto generate
additional detailed trip reports that delineate the cause
and effects of the event. Such reports need to specify
critical information needed for dataanaysissuch asthe
power level at the time of the plant trip and the
seguence of events, including the timing of individual
events.

4.1.1.2 Component Failures

For each event at a plant resulting in the unavailability
of acomponent, it isnecessary that the raw data sources
identify the particular component or set of components
associated with the event. In order to determine if a
specific event contributes to a particular component
fallure mode or to an unavailability due to the
component being in maintenance (either preventive or
corrective), it is necessary to be able to distinguish
between different degrees of degradation or failure.
The event reports should therefore specify whether
maintenance was required and if the maintenance was
correctiveor preventive. If thecomponent mai ntenance
is preventive there is generally no failure that initiates
the maintenance.
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If an event involves corrective maintenance,
information is required to allow determination of the
severity of thefailure (see Section 3.3 for definitions of
event severity). The ability to distinguish between
severity levelsof failuresisparticularly important since
the difference between the frequencies of catastrophic
and degraded modes of failures can be significant. In
addition, information is required to determine the
component in which the failure actually occurred and
the mode of failure. Finally, it should be possible to
determinethetimethe component isunavailable during
each maintenance event.

The data analysis may use plant data on component
unavailability that isbeing collected for other than PRA
purposes. The requirements for recording the data for
these other purposes may use definitions of severity and
fallure modes that are different from the PRA
definitions. The definitions used for the data collection
programs should be determined and an appropriate
trandation to the PRA basic events made.

4.1.1.3 Recovery Events

The information needed to estimate the probabilities
associated with recovering specific components or
systems from afailed state is similar to that needed for
component failures. Specific information pertaining to
the type of failure experienced by the component or
system (e.g., fail to operate, fail to start, fail to run), the
number of repair occurrences, and the time required to
perform the repair is needed to produce component
repair probabilities.

4.1.2 Data Sources

Data sources that can provide information for
determining the number of initiating events include:

» internal plant failurerecords(e.g., scramreportsor
unusual event reports),

e operator logs,

* LERs and

« monthly operating reports/Gray Book.

Somedatasourcesthat typically provideinformationon
the occurrence of component failures include:

* LERs,

« internal plant failure records (e.g., failure reports,
trouble reports, or unusual event reports),

* maintenance records (e.g., maintenance work
orders, work request records),

e plant logs (e.g., control room log, component
history logs), and

* data bases (e.g., Equipment Performance and
Information Exchange System/Nuclear Plant
Reliability Data System).

The evaluation of component failureratesalso requires
the number of demands and operating time for the
components. Sources of data for these parameters
include:

»  monthly operating reports/Gray Book,

*  component history logs,

* plant population lists,

» test procedures,

»  plant operating procedures, and

» component demand or operating time counters

Repair information can be obtained from sources such
as:

* plantlogsand
e maintenance work orders.

The type of information available in these sources and
their limitationsare discussed in the foll owing sections.

4.1.2.1 Regulatory Reports

All plants are required to submit LERs to the NRC for
all events meeting the 10 CFR 50.73 reporting criteria
presented in NUREG-1022 (NRC 2000a). LERsdeal
with significant events related to the plant, including
plant shutdowns required by the technical
specifications, multipletrainfailures, engineered saf ety
feature actuations, and conditions outside the design
basis or not covered by plant procedures. An LER
includes an abstract that describes the maor
occurrencesduring the event; the components, systems,
or human failures that contributed to the event; the
fallure mode, mechanism, and effect of each failed
component; and an estimate of the elapsed time from
thediscovery of thefailureuntil the safety systemtrain
wasreturnedto service. A computerized search of LER
information is possibl e using the Sequence Coding and
Search System (SCSS) (Gallaher et al. 1984).

LERs generaly provide a good description of the
causes of a reactor trip and subsequent events.
However, their value for obtaining component failure
datais very limited. The reporting criteriaare limited
to safety-related trains or system failures, and therefore
LERs are not generally submitted for all failures.
Furthermore, LERs may not be submitted for every



safety-related component failure since individual
component failures do not have to be reported if
redundant equipment in the same system was operable
and available to perform the safety function. The
reporting criteria for LERs are also subject to
interpretation by the persons generating the reports and
thus can lead to inconsistencies in the LER data base.
Furthermore, there are other perceived deficienciesin
the LERs (Whitehead et al. 1993) that limit the
usefulness of the LER system for use in obtaining
estimates of component failure rates. The NRC staff
prepared NUREG-1022, Revision 1 (NRC 1998), to
address general issues in reporting that have not been
consistently applied. It covers some of the issues
identified above.

The LER rule published in 1983 has recently been
amended and the reporting guidance in NUREG-1022,
Revision 2 (NRC 2000a) has been revised to eliminate
the burden of reporting events of little or no safety
significance, to better align the rules with the NRC's
current needs and to clarify the reporting guidance
where needed. However, therulestill only requiresthe
reporting of failures leading to the unavailability of
safety-related system trains. Thus, LERs will not
providefailuredatafor all risk significant components.

In summary, LERs are a good source for identifying
and grouping initiating events. However, they have
very limited valuefor obtaining component failuredata.

A plant's Technical Specifications requires that a
monthly operating report be provided by the plant
licensee to the NRC. The scope of the information
requested of the licensees was originally identified in
Draft Regulatory Guide 1.16 (NRC 1975a) and includes
operating statistics and shutdown experience
information. Theinformation requested to be included
inthe monthly operating report contentswasrevised by
Generic Letter 97-02 (NRC 1997) and eliminated some
reporting requirements. Information that still must be
reported includesidentification of al plant shutdowns,
whether they wereforced or scheduled shutdowns, their
duration, the reason for the shutdown, the method of
shutting down the reactor, and corrective actions that
were taken. In addition, the monthly operating reports
include the number of hoursthe reactor wascritical, the
number of hours the generator was on line, and the net
electrical output of the plant.

The NRC initially compiled the information from the
monthly operating reports on a monthly basis and
published it in a hard copy form as NUREG-0020,
“Licensed Operating Reactors - Status Summary
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Report” (NRC 1995b). Thisdocument isreferred to as
the “Gray Book.” NUREG-0020 was discontinued
after the December 1995 report. However, the data
requested in Generic Letter 97-02isbeing collected and
computerized aspart of the NRC Performance I ndicator
Project.

In summary, the monthly operating reports provide
information on the number of scrams, the time spent at
full power, and the time spent in shutdown. This
information can be used in identifying and grouping
initiating events and in cal culating the exposuretimein
which they occurred. It is important to note that this
sameinformationisgenerally availablefromthe control
room logs and other sources. Thus, in generd, the
monthly operating reports can be used to supplement or
verify other data sources.

4.1.2.2 Internal Plant Failure Reports

Different plants have different means of recording
initiating events and component failures. For each
automatic and manual scram, most plants generate an
internal scram report. Scram reports generally cover
the same information provided in LERs and monthly
operating reports. Thus, they can be used as the
primary or supplementary source for evaluating plant
scrams.

Most plants have a means of recording component
failures, records that are for the licensee's own use
rather than for aregulatory use. Reports are generally
created when significant component failures or
degraded states occur during plant operation or are
identified during plant surveillancetests. Thesereports
may be called Unusual Occurrence Reports, Action
Reports, Failure Reports, Discrepancy Reports, or
Trouble Reports. Some of the events documented in
these reports may lead to an LER. However, these
reports may not identify all component failures and
generally are not exhaustive. Thus, these reports are
useful for supplemental information but are not agood
source of component reliability data.

4.1.2.3 Maintenance Records

At al plants, some form of written authorization form
is reguired to initiate corrective or preventative
maintenance work, or design changes. These author-
ization forms are known under different names at
various plants including work reguest/completion
records, maintenance work orders, clearance requests,
work requests, or tag-out orders. Maintenance records
are a primary source of component failure data since
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they usually identify the component being maintained,
whether the component has failed or is degraded, the
corrective action taken, and the duration of the
maintenance action. The time of the failure is also
available but maintenance records generally contain
limited information on theimpact, cause, and method of
discovery of the component failure.

4.1.2.4 Plant Logs

At each plant, acontrol roomlogistypically completed
for each shift and contains a record of al important
events at a plant. Control room logs identify power
level and plant mode changes, essential equipment
status changes, major system and equipment tests, and
entry and exit of Technical Specification Limiting
Conditions of Operation (LCOs). When properly
maintained, a control room log is a good source of
information on major equipment and unit availability.
However, the amount of information entered can vary
from shift to shift. Furthermore, the entries tend to be
brief.

The control room logs are difficult to use as a source of
maintenance data since the tag-out and tag-in for a
maintenance event may span days or even months and
may not be dutifully recorded. The control room logs
are aso limited in value as a source of component
failure datasincenot all failures may berecorded by the
operators. Component maintenanceand failureinform-
ation is generaly found more easily in maintenance
work orders. All plant tripsarelikely to be recorded on
control room logs, but likely will not include a
description of the cause of the trip or the subsequent
transient behavior. LERs or plant scram reports must
be reviewed to obtain this additional information.

Insummary, control roomlogs are good supplementary
sources of information but there are usually more
convenient and complete sources of information
available such as maintenance records. However, the
control room logs are probably the best source of data
for indicating when redundant system trains are
switched from operating to standby status.

There may be other logsat aplant that contain essential
data. One exampleisacomponent history log. These
logs typically contain data on every failure and
mai ntenance and test action for agiven component. As
such, component history logs are good sources for
identifying not only the number of component failures,
but aso the number of demands a component
experiences.
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4.1.25 Component Exposure Data Sources

Calculation of plant-specific failure rates requires
determination of the number of failures and the
corresponding number of demands or operating time.
As indicated in the previous subsections, some of the
data sources used to establish the number of failures
also containinformation on the number of demandsand
operating time. However, these sources do not contain
all component demands or the operating time for all
components.  Additional documents that must be
reviewed for information about component demands
and operating hours include test procedures.

In addition to demands presented by automatic
initiations and maintenance activities (obtained from
sources such as control room logs and maintenance
records), periodic testing is an important source of
demands especially for safety-related equipment. To
establish the number of demands due to testing, testing
procedures pertinent to acomponent must be reviewed.
In addition to the actual test demands, additional test
demands may be imposed by technical specifications
following failure of a component. A typical example
where this is imposed is when a diesel generator is
unavailable for operation. Test logs or similar records
can be examined to obtain an estimate of the number of
tests carried out during the time period of interest.

It should also be noted that at some plants, some major
components may be monitored to count the number of
actuations experienced by the breakers (breaker cycle
counters). In addition, the operating hours for large
motor-driven components at some plants may be
automatically registered on running time meters at the
electrical switchgear. Such counters and logs can be
used to supplement the demand and operating time
information obtained from other sources.

4.1.3 Plant-Specific Data Bases

The Institute of Nuclear Power Operations (INPO) has
maintained several databases of component failure data
provided by each nuclear power plant since 1984. The
first, Nuclear Plant Reliability Data System (NPRDS),
was a proprietary computer-based collection of
engineering, operational, and failure data on systems
and components in U.S. nuclear power plants through
1996. The second, the Equipment Performance and
Information Exchange (EPIX) System, replaced
NPRDS and includes data reported since 1987. Both
data bases are discussed in the following sections.



4.1.3.1 Nuclear Plant Reliability Data System
(NPRDS)

Intheearly 1970s, industry committeesof the American
National Standards Institute (ANSI) and the Edison
Electric Ingtitute (EEI) recognized the need for failure
data on nuclear plant components. As aresult, a data
collection system was devel oped whose objective was
tomakeavailablereliability statistics(e.g., failurerates,
mean-time-between-fail ures, mean-time-to-restore) for
safety related systems and components.

This system, the Nuclear Plant Reliability Data System
(Tashjian 1982), wasdevel oped by Southwest Research
Ingtitute (SwRI). Plants began reporting data on a
voluntary basis in 1974, and continued reporting to
SwWRI until 1982. In January 1982, the INPO assumed
management responsibility for the system until
reporting was terminated at the end of 1996.

Originally the scope of the NPRDS covered the systems
and componentsclassified by ANS| standards as Safety
Class1, 2, or 1E, with afew exceptions such as reactor
vessel internals and spent fuel storage. However, later
the scope was expanded to cover any system important
to safety and any system for which a loss of function
can initiate significant plant transients (Simard  1983).
By the end of 1984, 86 nuclear power plant units were
supplying detailed design data and failure reports on
some 4,000 to 5,000 plant componentsfrom 30 systems
(Simard 1985).

Data reported to NPRDS consisted of two kinds:
engineering reports and failure reports.  The
engineering reports provided detailed design and
operating characteristics for each reportable
component. The failure reports provided information
on each reportabl e component whenever the component
was unableto performitsintended function. The same
operational data contained in NUREG-0200 was also
included in the system. The NPRDS failure reports
provided to INPO were generally generated by plant
licensees utilizing maintenance records such as
maintenance work orders. These reports utilized a
standard set of component boundariesand failure mode
definitions.

4.1.3.1.1 Limitationsin the Data Available from
the NPRDS

Several issues regarding the quality and utility of the
NPRDS data have been observed, including:
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1. Input to NPRDS was discontinued on December
31, 1996.

2. Thenumber of component demandsisprovided by
estimation.

3. Theexposuretimeis estimated.

4. The amount of time needed to repair components
out for corrective maintenance is not provided.

5. Maintenance rates are not provided.

6. The voluntary nature of the reporting system
introduces uncertainty into measuring the
frequency at which a particular type of problem
OCCUrs.

7. Thefinal results of a problem investigation or the
ultimate corrective action taken are not always
included.

8. Report entries tend to be brief and often do not
provide enough information to identify the exact
failure mechanism.

4.1.3.2 Equipment Performance and Information
Exchange (EPIX) System

The need for high-quality, plant-specific reliability and
availability information to support risk-informed
applications was one impetus for a proposed reliability
datarule by the NRC to require utilitiesto provide such
information. Instead of a regulatory rule, the nuclear
industry committed to voluntarily report reliability
information for risk-significant systems and equipment
to the EPIX system. EPIX isaweb-based database of
component engineering and failure data developed by
INPOto replace NPRDS. The utilities began reporting
to EPIX on January 1, 1997.

EPIX enables sharing of engineering and failure
information on sel ected componentswithin the scope of
the NRC's Maintenance Rule (10 CFR 50.65) and on
equipment failuresthat cause power reductions. It also
provides failure rate and reliability information for a
limited number of risk-significant plant components.
Thisincludescomponentsinthe systemsincludedinthe
scope of the Safety System Performance Indicator
(SSPI) program. EPIX consists of:

* asite-specific database controlled by each INPO
member site with web-based data entry and
retrieval,

e anindustry database on the INPO web site where
selected parts of the site-specific database are
shared among plants, and

* aretrieval tool that provides access to the vast
historical equipment performance information
available in the NPRDS.
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Eventsreported to EPI X include both completefailures
of components and degraded component operation.
The number of demands and operating hours (i.e.,
reliability data) and the unavailability arerequired to be
collected for key components in the SSPI safety
systems for each plant. In addition, contributors to
EPIX are aso to include one-time estimates of the
number of demands and run hours for other risk-
significant components not included in SSPI systems.
4.1.33 Rdliability and Availability Data
System (RADS)

TheNRC hasdevel oped the Reliability and Availability
Data System (RADS) to provide the reliability and
availability dataneeded by the NRC to perform generic
and plant-specific assessments and to support PRA and
risk-informed regulatory applications. The NRC is
incorporating datafrom EPIX and INPO’sSSPI system
along with information from other data sources (e.g.,
LERsand monthly operating reports) into RADS. Data
areavailablefor themajor componentsin the most risk-
important systems in both boiling water reactors
(BWRs) and pressurized water reactors ( PWRS).

The reliability parameters that can be estimated using
RADS are:

» probability of failure on demand,

« failure rate during operation (used to calculate
probability of failure to continue operation),

*  maintenanceout-of-serviceunavailability (planned
and unplanned), and

e timetrendsin reliability parameters.

The statistical methods available in RADS include
classical dtatistica methods (maximum likelihood
estimatesand confidenceintervals), Bayesian methods,
tests for homogeneity of the data for deciding whether
to pool the data or not, Empirical Bayes methods, and
methods for trending the reliability parameters over
time.

4.2 Generic Data Sources

Severa generic data sources currently available and
used throughout the nuclear power PRA industry are
identified in this section. Several of these data bases
are discussed with regard to their attributes, strengths,
and weaknesses. Data bases for both initiating events
and component failure rates are included. Some data
sources represent compilations of raw datawhich have
been collected directly from various facilities and

processed and statistically analyzed. Other datasources
utilizetheresultsof the statistical analyzes of other data
bases to derive estimates for component probabilities.

Section 4.2.1 contains discussions and summaries of
generic data bases sponsored by the NRC for use in
both government and industry PRAS. Section 4.2.2
contains discussions and summaries of generic data
bases sponsored by the Department of Energy (DOE)
for usein PRAs. Section 4.2.3 containsdiscussionsand
summaries of generic data bases devel oped by nuclear
power industry related organizations. Section 4.2.4
contains asummary of aforeign database, the Swedish
T-book. Section 4.2.5 contains a discussion of several
non-nuclear data bases which could be useful for some
data issues in nuclear power PRA. Section 4.2.6
describes a process for selecting a generic data value
from these sources.

421 NRC-Sponsored GenericDataBases

Thediscussion of NRC-sponsored generic databasesis
presented in two sections. The first discusses current
databases. Thesedata sources are deemed appropriate
for current and future use. The second section briefly
summarizes some historical data bases that have been
used or referenced in past analyses. While useful at
the time, these data bases are no longer considered
appropriate sour ces of information.

4.2.1.1 Current Data Bases

Current NRC-sponsored data bases are discussed inthe
following subsections. Magjor attributes for each data
base areidentified, and limitations associated with each
data base are provided.

As areminder, these data bases are considered to be
appropriate sources of information for use in PRAs or
other risk assessments. However, it is the user's
responsibility to ensurethat any information from these
data bases used in their analysisis appropriate for their
analysis.

42111 SevereAccident Risks Study Generic
Data Base (NUREG-1150)

The generic data base devel oped for the NRC' s Severe
Accident Risks study (NUREG-1150) (NRC 1990) is
documented in NUREG/CR-4550 as supporting
documentation (Drouinet al. 1990). Thisdatabasewas
devel oped from abroad base of information, including:



*  WASH 1400 (NRC 1975b),

» thelREP database (Carlson et a. 1983),

e Zion(ComEd 1981), Limerick (PECO 1982), Big
Rock Point (CPC 1981), and the Reactor Safety
Study Methodology Application Program
(RSSMAP) PRAs (Hatch et al. 1981),

* NRC LER summaries (Hubble and Miller 1980,
Appendices O through Y), and

» the NRC's Station Blackout Accident Analysis
(Kolaczkowski and Payne 1983).

Component failure probabilities, failure rates, and
initiating event frequencies typically modeled in the
NUREG-1150 plant analyses are included in the data
base. A meanvalueand an error factor onalog normal
distribution are provided for each entry into the data
base.

Limitationsin the Data Available from
NUREG-1150

The basis of the NUREG-1150 data base is from a
broad group of prior PRA analyses and generic data
bases. Thus, it doesnot directly represent the results of
the analysis of actual operational data. Furthermore,
the data upon which those previous analyses are based
suffer from limitations similar to those for older NRC
data sources and the NPRDS data base (Sections
4.2.1.2and 4.2.3.1).

4.2.1.1.2 Evaluation of Loss of Offsite Power
Events at Nuclear Power Plants:
1980 - 1996

The report Evaluation of Loss of Offsite Power Events
at Nuclear Power Plants: 1980 - 1996, NUREG/CR-
5496 (Atwood et al. 1998), presents an analysis of loss
of offsite power (LOSP) initiating event frequency and
recovery times for power and shutdown operations at
commercia nuclear power plants. The evaluation is
based on LERs for events that occurred during 1980
through 1996. The primary objective of the study was
to provide mean and uncertainty information for LOSP
initiating event frequencies and recovery times. A
secondary objective was to re-examine engineering
insights from NUREG-1032 (a LOSP study covering
the years 1968 through 1985) using the more recent
data

The mgjor findings of the report are;
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* Not all LOSP events that occur at power result in
aplant trip.

»  Plant-centered events clearly dominate the LOSP
frequency during both power and non-power
operational modes.

* Plant-centered LOSP frequency is significantly
higher during shutdown modes than during power
operation.

* No statistically significant variation among units
was found for plant-centered sustained initiating
events.

»  During shutdown, statistically significant variation
among plants was found for plant-centered
sustained initiating events.

*  Equipment faultswere the main contributor (58%)
to plant-centered LOSP initiating events that
occurred during power operations. Human error
accounted for a smaller contribution (23%).

*  During shutdown conditions, human error was the
dominant contributor (58%).

* A clear downward trend can be seen for the plant-
centered initiating event frequency.

*  Grid-related LOSP frequency is small.

»  For severeweather, statistically significant site-to-
sitevariability existsfor sustained shutdown LOSP
frequencies.

*  Severe weather events had significantly longer
sustained recovery times.

»  For sustained recovery times, no pattern wasfound
correlating unit design class with longer recovery
times.

*  Longer recovery timeswereobserved for sustained
plant-centered LOSP eventsthat did not resultina
plant trip or that occurred during shutdown.

Nominal frequencies and upper and lower bounds are
given in the report.

Limitationsin the Data Available from
NUREG/CR-5496

Thegeneric databasedevel opedinthisNRC-sponsored
data study is based on raw data from LERs. LERs
congtitute data involving only reportable events at
nuclear power plants, and the degree of detail provided
in the LERs varies. Some information needed in the
data analysis had to be estimated (e.g., alocation of
1980 time into critical and shutdown time), and the
analysisended with eventsthat occurred in 1996. Thus,
the data base does not contain eventsthat occurred after
1996, and may not be representative of actual current
operational experience.
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4.2.1.1.3 Ratesof Initiating Eventsat U.S.
Nuclear Power Plants: 1987 - 1995

The report Rates of Initiating Events at U.S. Nuclear
Power Plants: 1987 - 1995, NUREG/CR-5750 (Pol oski
et al. 1999a), presents an analysis of initiating event
frequencies at domestic nuclear power plants. The
evaluation is based primarily on the operational
experience from 1987 through 1995 as reported in
LERs. The objectives of the study were to:

» providerevised frequenciesfor initiation eventsin
domestic nuclear plants,

» comparethese estimatesto estimatesused in PRAS
and Individual Plant Evaluations (IPEs), and

* determine trends and patterns of
performance.

plant

Major findings of the report are:

e Combined initiating event frequencies for al
initiators from 1987 through 1995 are lower than
thefrequenciesusedinNUREG-1150 (NRC 1990)
and industry IPEs by a factor of five and four,
respectively.

*  General transients congtitute 77% of al initiating
events, while events that pose a more severe
challenge to mitigation systems constitute 23%.

* Over the time period of the study, either a
decreasing or constant timetrend was observed for
all categories of events.

» Lossof coolant accident (LOCA) frequencies are
lower than those used in NUREG-1150 and
industry |PEs.

Nominal frequencies and upper and lower bounds are
given in the report.

Limitationsin the Data Available from
NUREG/CR-5750

Thegeneric databasedevel opedinthisNRC-sponsored
data study is primarily based on raw LER data from
1987 through 1995. For some events (e.g., LOCAS)
information from additional operating experience, both
domestic and foreign, was used with other sources of
information (e.g., engineering analyses) to estimate the
initiating event frequencies. Since the analysis ended
with eventsthat occurred in 1995 and made use of other
sources of information, the data base may not be
representative of actual current operational experience.
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42114 System Reliability Studies

A seriesof systemreliability studies, documentedinthe
multi-volume NUREG/CR-5500 report,* presents an
analysis of system unreliability for various systems.?
The following volumes comprise the systems that will
be studied::

* Volume 1. auxiliary/emergency feedwater system
(Poloski et a. 1998),

* Volume 2. Westinghouse reactor protection
system (Eide et a. 1999a),

* Volume 3. Genera Electric reactor protection
system (Eide et a. 1999b),

* Volume4: high-pressure coolant injection system
(Grant et al. 19993),

* Volume 5. emergency diesel generator power
system (Grant et al. 1999b),

* Volume6: isolation condenser system (Grant et al.
1999c),

* Volume 7: reactor core isolation cooling system
(Poloski et a. 1999Db),

* Volume 8. high-pressure core spray system
(Poloski et a. 1999c),

* Volume 9: high pressure safety injection system
(Poloski et a. 2000),

* Volume 10: CE reactor
(Wierman et a. 2002a), and

* Volume 11: B&W reactor protection system
(Wierman et a. 2002b).

protection system

With the exception of the reactor protection system
volumes, the analyses of the other systems are based on
information obtained from LERs. For the reactor
protection system volumes, the analyses are based on
information obtained from NPRDS and LERs.

The analyses: (1) estimate the system unreliability
based on operating experience, (2) compare the
estimates with estimates using data from PRAs and
IPEs, (3) determine trends and patternsin the data, and
(4) provide insights into the failures and failure
mechani sms associated with the system.

1 Currently, it is expected that some of these reports will be
updated with new information.

2 Train, subsystem or system data can be combined with basic
event failure data to obtain improved estimates of component
fallurerates. A Bayesian method for doing thisis described in
Martz and Almond 1997.



Unreliability estimates (means and distributions) are
provided for the entire system for each plant. In
addition, unreliability estimates for major train
segments failure modes (e.g., failure to start — pump,
driver, valves, and associated piping) are provided.
Common cause failure estimates are also provided.

Limitationsin the Data Available from
NUREG/CR-5500

The information available from this NRC-sponsored
data study is based on that available from LERs and
NPRDS. LERs condtitute data only involving
reportable events at nuclear power plants, and the
degree of detail provided in the LERs varies. The
limitations associated with NPRDS are provided in
Section 4.2.3.1. The information used in the studies
spans various time frames, with the most up-to-date
information coming from 1997. Thus, theresults of the
studies may not be representative of actual current
operational experience.

4.2.1.1.5 Component Performance Studies

A series of component performance studies,
documented in the multi-volume NUREG-1715 report,
presents an analysis of component performance for
various components. Thefollowing volumes comprise
the components that have been studied:

e Volume 1: turbine-driven pumps (Houghton and

Hamzehee 2000a),

e Volume 2: motor-driven pumps (Houghton and
Hamzehee 2000b),

*  Volume3: air-operated valves (Houghton 2001a),
and

* Volume 4: motor-operated valves (Houghton
2001b).

The analyses are based on information obtained from
NPRDS and LERs. The data included in the studies
cover the period 1987 through 1995.

The analyses. (1) estimate the system-dependent
unreliability of selected components, (2) compare the
estimates with estimates from PRAs and IPEs, (3)
determine trends and patterns in the data, and (4)
provideinsightsinto component performance, including
component failure mechanisms.

System-dependent unreliability estimates (means and
distributions) for various failure mechanisms are
provided for each component. Trends in component
failure rates were also evaluated in these studies.
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Limitationsin the Data Available from
NUREG-1715

The information available from this NRC-sponsored
data study is based on that available from LERs and
NPRDS. LERs condtitute data only involving
reportable events at nuclear power plants, and the
degree of detail provided in the LERs varies. The
limitations associated with NPRDS are provided in
Section 4.2.3.1. The information used in the studies
gpans various time frames, with the most up-to-date
information coming from 1998. Thus, theresultsof the
studies may not be representative of actual current
operational experience.

4.2.1.2 Historical Data Bases

In the past, NRC sponsored several programs to
devel op data bases on nuclear power plant component
reliability and initiating event frequencies. These
programs included:

* In-Plant Reliability Data Base for Nuclear Power
Plant Components (IPRDS) (Drago et a. 1982) —
established at Oak Ridge National Laboratory to
establish methods for data collection and analysis.

*  Nuclear Reliability Evaluation Program (NREP) —
generic data base developed to support the
Probahilistic Safety Analysis Procedures Guide,
NUREG/CR-2815 (Papazoglou et a. 1984).

* Interim Reliability Evaluation Program (IREP)
Generic Data Base — developed to support the
performance of five PRAs in the 1980s and
documentedinthel REP proceduresguide(Carlson
et al. 1983).

* Nuclear Computerized Library for Assessing
Reactor Reliability (NUCLARR) —developed asa
repository of human error and hardware failure
information that could be used to support avariety
of analytica techniques for assessing risk.
NUCLARR was documented in five volumes as
NUREG/CR-4639 (Gertman et al. 1990).

Mgjor attributesfor each programand theresulting data
bases are documented in the cited references.

4.2.2 DOE-Sponsored GenericDataBases

Several data bases have been developed to support
DOE-sponsored projects. Two of these data bases are
discussed in the following sections.
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4.2.2.1 Component External Leakage and
Rupture Frequency Estimates

Estimates of external |eakage and rupture frequencies
for components such as piping, vaves, pumps, and
flanges are necessary for detailed risk analysis of
internal flooding. These estimateshave been devel oped
and documentedin EGG-SSRE-9639 (Eideet al. 1991).
The estimates are based on an analysis of datagathered
from a comprehensive search of LERS contained in
Nuclear Power Experience (NPE) (Hagler-Bailly 1972).

The NPE data base was searched for data covering the
period September 1960 through June 1990. The
external leakage and rupture events collected from the
datawere converted to component leakage and rupture
frequenciesin athree-step process:

1. The ratios of external rupture events to external
leakage and rupture events were examined for
various components by size and system to decide
how to group the data.

2. Thefinal probabilitiesof an external rupture, given
an external leakage or rupture event, were
determined.

3. Lastly, the external leakage and rupture
frequencies were obtained by estimating
component populations and exposure times.

Limitationsin the Data Available from
EGG-SSRE-9639

Thegeneric database devel opedinthisDOE-sponsored
datastudy isbased on raw LER datafrom 1960 through
1990. LERSs constitute data only involving reportable
events at nuclear power plants, and the degree of detail
provided in the LERs varies. Since the analysis ended
with eventsthat occurredin 1990, the data base may not
be representative of actual current operational
experience.

4.2.2.2 Generic Component Failure Data Base
for Light Water and Liquid Sodium
Reactor PRAS

A generic component failure data base was developed
by the Idaho National Engineering Laboratory (INEL)
for light water and liquid sodium reactor PRAs. This
data base is documented in EGG-SSRE-8875 (Eide et
a. 1990). The intent of this project was to base the
component failurerateson available plant dataas much

4-10

as possible rather than on estimates or data from other
types of facilities. The NUCLARR data base and the
Centralized Reliability Data Organization (CREDO)
(Manning et al. 1986) were used asthe primary sources
of component failure data. 1f specific components and
failure modes were not covered in those two sources,
then other standard sources such as IEEE STD-500
(IEEE 1983) (for electrical components) and WASH-
1400 (NRC 1975b) were used. The data base is
organized into four categoriesaccording to theworking
fluid of the component:

» mechanical components (water or steam),
»  mechanical components (liquid sodium),

* mechanical components (air or gas), and

» électrical components.

Limitationsin the Data Available from
EGG-SSRE-8875

Thegeneric databasedevel opedinthisDOE-sponsored
data study is based on information from multiple
sources. Since the analysis ended with events that
occurred in 1990, the data base may not be
representative of actual current operational experience.

4.2.3 Industry Data Bases

Several data bases devel oped within the nuclear power
industry for both risk assessment and for plant
operations are summarized here. Data bases discussed
in this section were developed by the Electric Power
Research Institute (EPRI) and the consulting firms of
EQE, International and Science Applications
International Corporation (SAIC).

Although the NPRDS and EPIX data bases (described
in Section 4.1.3) contain plant-specific data, they canbe
used to generate generic failure rates for components.
Methods for aggregating individual plant data to
estimatefailureratesare described in Section 8.2 of this
handbook. Aggregation of data from EPIX can be
performed using the RADS software developed under
the NRC auspice.

4.2.3.1 EQE, International

The EQE, International generic data base (formerly
known as the Pickard, Lowe, and Garrick or PLG data
base) for light water reactors is set up to support PRA
and reliability analysis for which both point estimates



and uncertainty distributions are developed.® The data
base contains information on:

»  Component failure rates,

»  Common cause failures,

»  Component maintenance frequencies and mean
durations,

* Initiating events,

* Fireand flood events at nuclear sites, and

*  Shutdown events involving loss of residual heat
remova (RHR) cooling and loss of inventory.

Thefire, flood, and shutdown eventsare acompendium
of experience event summaries from al U.S. nuclear
sites. The common cause data are presented as event
description and have been classified according to the
methodology of NUREG/CR-4780 (Mosleh et al.
1989). The fire, flood, shutdown and common cause
events have, in addition to the description, information
in various fields making them convenient for sorting
and for use in plant-specific screening analysis.

All other data are in the form of distributions and are
compatible with the PLG risk assessment software,
RISKMAN® . These distributions are generated using
the data analysis module of RISKMAN® which can be
used as a stand-alone software. The distributions
developed are available to the other modules of
RISKMAN® used for fault-tree quantification and core
damage sequence quantification.

The actuarial data are from over 20 nuclear sitesin the
U.S. and in Europe. Other sources of generic
information also used are:

* EPRI reports on components, shutdown accident
events, initiating events, loss of offsite power;

»  Speciad NUREG reports on components such as
pumps, valves, diesel/generators;

» Compiled data bases such as Nuclear Power
Experience, NUCLARR, |EEE-500 (IEEE 1983),
NPRDS, etc.; and

* Insurance company databases for loss events.

The database includes statistics for components that
cover population, demands, operating times, failures,
and maintenance outages and durations at specific

3 Theinformation on the EQE/PLG data base is based on personal
correspondence from Shabha Rao, PLG, Newport Beach,
California, to Timothy Wheeler, Sandia National Laboratories,
September 16, 1999, and to Donnie Whitehead, Sandia National
Laboratories, April 4, 2001.
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plants. It aso includes event-by-event analyses for
initiating events, common cause failures, and fires and
floodsover thewhole U.S. plant population. In addition
to this factual information, parameter estimates from
published sources of generic reliability data are also
provided.

The actuaria data and the other generic data are
combined using a two-stage Bayesian updating
technique. The generic distributions maintain what is
referred to as plant-to-plant variability. Since the data
are developed specifically to be used for Monte Carlo
sampling, they are defined with a minimum of 20
discrete binswith special attention given to the tails of
the distributions.

The database is available in a format compatible with
RISKMAN® and aso as ASCI| files.

Limitations in the Data Available from EQE,
International

The EQE databaseis proprietary, so the adequacy and
comprehensiveness of the underlying data have not
been evaluated for this document. As noted above,
several of the sources of generic information
incorporated into thedatabase arediscussed previously
in this chapter (e.g., NUCLARR, NPRDYS); thus, it is
possible that some of the data from the EQE data base
may have limitations similar to other data bases
discussed in this chapter. However, it should be noted
that the proprietary nature of the EQE data base
precludes any definitive judgment asto how data bases
such as NUCLARR and NPRDS were utilized in the
development of the EQE database.

4.2.3.2 Science ApplicationsInternational
Corporation

Science Applicationsinternational Corporation (SAIC)
has developed a generic, proprietary data base for
application to PRAs on commercial nuclear power
plants.*

The scope of the data base for components and their
failure modes was established by a review and
tabulation of all basic eventsand component failuresin
SAIC-conducted PRAs. Components were grouped

4 The information on the SAIC data base is based on a personal
correspondence from Alan Kolaczkowski, Vice President, SAIC,
to Donnie Whitehead, Sandia National Laboratories, April 18,
2001.
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into generic categories rather than specifically by
systemor application. Thus, al basic eventsfor motor-
driven pumps were categorized into a single “motor-
driven-pump” category rather than delineated size or by
system. Some component failure modes were merged
to reflect the available data (e.g., air-operated valves
fail-to-open and fail-to-close were combined into a
single failure mode — fail-to-operate. Component
boundary definitionsaregivenfor all componentsinthe
SAIC generic data base.

The data base was developed by collecting all sources
of avalable parameter estimates relevant to the
component failures defined by the scoping process.
Each data source was evaluated against a set of
acceptance criteria, including availability (no
proprietary sources were included), compatibility of
data to being fit to a lognormal distribution, and
Bayesian updating. Any source which used Bayesian
parameter estimation methods to develop estimates for
component failure modes was rejected. Such data
sources were considered to be too plant-specific for
inclusion into a generic data base.

Each individua data source selected against the
acceptance criteria was fitted to a lognormal
distribution. Then, all data sourcesfor each particular
component failure were aggregated through aweighted
sum approach (each source was weighted equally).
Each aggregated distribution was fitted to alognormal
distribution.

Limitations in the Data Available from the SAIC
Data Base

The SAIC databaseisproprietary, so the adequacy and
comprehensiveness of the underlying data have not
been evaluated for this document.

4.2.3.3 Advanced Light Water Reactor Data
Base

EPRI’ sAdvanced Light Water Reactor (ALWR) Utility
Requirements Document (EPRI 1989) contains a
reliability data base for usein ALWR PRAs. Severa
data sources were reviewed and representative failure
rates and event probabilities were compiled from these
data sources. A best estimate value was selected for
each component type and failure mode based on
judgment regarding the applicability of the data source
to the expected ALWR design. The primary sources
used in the data survey were the Oconee PRA (Duke
1984), the Seabrook Probahilistic Safety Study (PLG
1983), parameter estimates from licensee-event reports
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documented in NUREG/CR-1363 (Battle 1983) for
valves, NUREG/CR-1205 (Trojovsky 1982) for pumps,
and NUREG/CR-1362 for diesel generators (Poloski
and Sullivan 1980).

Limitationsin the Data Available from the ALWR
Data Base

The ALWR database lists only best estimates for each
initiating event, failurerate, and event probability. The
survey iswell documentedinthat all estimatescollected
for each parameter estimate are shown. However, only
a cursory statement of rationale for deriving the best
estimate value is given. No uncertainty bounds or
probability density functions are given.

4.2.4 Foreign Sources

Two sources of data from Nordic nuclear power plants
are available. The I-Book documents initiating event
frequency data and the T-Book documents component
failure data.

4241 Sweden’sT-Book for Nordic Nuclear
Power Plants

Sincethe early 1980s aReliability Data Handbook, the
T-Book (ATV 1992), has been developed and used for
nuclear power plant of Swedish design. The T-Book
provides failure data for the calculation of component
reliability for use in regulatory safety analyses of
Nordic nuclear power plants. The 3" edition is based
on operation statistics from 12 Swedish and 2 Finnish
nuclear power plants, including approximately 110
reactor years of experience.

The failure characteristics incorporated into the
parameter estimations in the T-Book are based on
Licensee Event Reports for Nordic plants delivered to
the Swedish Nuclear Power Inspectorate (SKi) and
from failure reportsin ATV’s central database. Only
critical failures, those that actually caused a
component’s function to stop or fail, are incorporated
into the parameter estimations. A multistage empirical
Bayesian approach is used to develop the component
parameter estimates from the raw data (Pgrn 1996).

Limitationsin the Data Available from the T-Book

Datafor the T-Book are collected from LERsdelivered
to the SKi; thus, the parameter estimates derived from
the data are based only on data of reportable incidents.
It is not understood how representative such data may
be of actual operational experience.



4.2.4.2 Sweden’s|-Book for Nordic Nuclear
Power Plants

Thel-Book (P@rn et al. 1994) containsacompilation of
initiating events that have occurred in Nordic nuclear
power plants. The data reflects 215 reactor years of
operating experience prior to 1994. Inthefirst edition
of the 1-Book, issued in 1993 (Pfrn et a. 1993),
initiating event groups were identified and frequencies
generated. The operating experience from two
additional plantsin Finland wereincluded in the second
edition (P@rn et al. 1994).

The 1-Book includes the development of a statistical
model for performing a trend analysis. The model is
based on nonhomogeneous Poisson (Power Law)
processes and includes a complete treatment of
parametric uncertainty using Bayesian methods.

Limitationsin the Data Available from the |-Book

Data for the I-Book are collected from operating
experience at Nordic plants. It is not understood how
representative such data may be of operationa
experiencein nuclear power plantsinthe United States.

425 Non-Nuclear Power Data Bases

There are many non-nuclear data bases that contain
failure data that can potentially be used in nuclear
power plant PRAs. Severa of these data bases are
described below. When using data from non-
commercial nuclear sources, care must be taken to
ensure that the data are for components and conditions
representative of those that exist in nuclear power
plants.

4.25.1 Rdiability Analysis Center

The Reliability Analysis Center (RAC) in Rome, New
Y ork, maintains two data bases on electronic and non-
electronic component reliability. The data bases are:

» Electronic Parts Reliability Data (Denson et al.
1996), and

* Non-Electronic Parts Reliability Data (Denson et
al. 1995).

These RAC databases provide empirical field failure
rate dataon awide range of electronic components and
electrical, mechanical, and el ectro-mechanical partsand
assemblies. The failure rate data contained in these
documents represent cumulative compilation from the
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early 1970s up to the publication year for each
document. Data are collected from sources such as:

published reports and papers,
government-sponsored studies,

military maintenance data collection systems,
commercial/industrial maintenance databases, and
direct submittals to the RAC from military or
commercial organizationsthat maintainfailuredata
bases.

Limitations in the Data Available from the RAC
Handbooks

The RAC handbooks provide point estimate parameter
estimations for failure rates (or demand probabilities).
No treatment of uncertainty is provided.

4.2.5.2 Offshore Rédliability Data Project

The Offshore Reliability Data (OREDA) project has
collected and processed data from offshore oil
platforms operated by 10 different companies off the
coasts of the U.K ., Italy, and Norway. Reliability data
collected and processed by OREDA hasbeen published
in the Offshore Reliability Data Handbook (OREDA
1997). The main objective of OREDA is to collect
reliability data for safety important equipment in the
offshore oil industry.

Components and systems for which data are collected
are:

*  Machinery
— Compressors
— Gasturbines
—  Pumps
»  Electric generators
e Mechanica Equipment
— Heat exchangers
— Vesss
e Control and Safety Equipment
— Control Logic Units
— Fireand Gas Detectors
— Process sensors
 Vaves
e Subsea Equipment
—  Control Systems
—  Waéll completions

Data have been collected from 7,629 individual
equipment units (e.g., individua pumps, valves,
motors) over atotal observation period of 22,373 years.
The recordsinclude 11,154 failures.
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Under each category of equipment (e.g., machinery)
information is collected on each type of component
(e.q., centrifugal compressors). Dataare further sorted
by a component’s driving mechanism (e.g., electric
motor-driven), by failuremode(e.g., fails-to-dtart, fails-
while-running), and by the criticality of each failure
(eg., criticad - terminates the operation of the
component, degraded - component still operates).

The OREDA-97 handbook presents failure rate and
demand failure probability estimates for various
combinations of component function, application,
capacity, operating fluid, and size.

LimitationsintheData Availablefrom the OREDA
Data Base

Certain data quality issues have arisen in the
development of OREDA (Sandtorv et al. 1996). The
quality and availability of data can vary significantly
among the 10 participating companies. Interpretations
of equipment definitions and failure mode
specifications can vary among the participants as well,
affecting the quality of data. The effect of preventive
maintenance on equipment reliability is difficult to
measure. Since preventive maintenance practicesvary
among the participating companies it is unclear as to
what would be the baseline rate of a generic type of
equipment.

4.25.3 |EEE-500 Standard

The Ingtitute of Electrica and Electronics Engineers
(IEEE), Inc. Standard 500-1984 (IEEE 1983) contains
failure estimates for various electrical, electronic,
sensing, and mechanical components. Delphi
procedures (an elicitation process) were used in
producing component failure estimates. Multiple
sources of information, including nuclear, fossil fuel,
and industrial, were considered by the expertsas part of
the Delphi process.

Limitationsin the |EEE-500 Data Base

The major limitations associated with the |IEEE-500
data base are (1) the data base contains dated material
(i.e., the latest information used to develop the data
base comes from the early 1980s), and (2) the process
used to support development of the failure estimates
was an uncontrolled process. (A survey was sent to
various individuals requesting them to provide
information on selected issues. No inherent controls
were placed on theindividuals, and no training on how
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to estimate failure probabilities was provided to the
individualsfilling out the survey forms.) Inaddition, it
should be noted that | EEE Standard 500-1984 has been
withdrawn and is no longer available from |EEE.

426 Seection of Parameter Estimates
from Existing Data Bases

The need to select parameter estimates from existing
generic data bases may arise when performing a PRA.
This can occur when a PRA is being performed on a
new plant that has no operating history or it may occur
when no plant-specific information existsfor aspecific
component. Whatever the reason, when it becomes
necessary to select parameter estimates from generic
data bases, certain cautions should be observed:

1. The generic data base should contain failure
probability estimates for components that are
identical or comparable to the ones in the PRA
model in terms of size, component boundary
definition, intended operational history (e.qg.,
normally operating versus standby), and expected
or postulated operating environment.

2. The generic data base should contain a
recommended point estimate and an uncertainty
distribution for each identified failure.

3. If possible, the primary sources of information
used to develop the generic data base's failure
probabilities and distributions should be
information from other nuclear power plants.
Supplemental  information from non-nuclear
sources should be used only when necessary to
provide failure probabilities and distributions for
components that cannot be obtained from nuclear
power plant generic data sources.

4. Where possible, the generic data base's failure
probabilities and distributions should be derived
from actual failure events. If such information is
not available, then failure probabilities and
distributions generated by other techniques (e.g.,
expert elicitation) are acceptable.

5. Generic data base failure probabilities and
distributions should reflect current trends. If
significant trends exist within the failure data
indicating either an increase or decrease in the
failure probabilities, the underlying event failure
infformation used to generate the failure
probabilities should represent these recent events.



However, if no significant trends exit, then data
from all years can be used to estimate the failure
probabilities.

The failure probability estimates contained within
the generic data base should not be based on
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incestuous sources, i.e., the estimates should not be
derived from two different sources that employed
similar or different analysistechniquesto thesame
ultimate set of failure information.
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5. PLANT-SPECIFIC DATA COLLECTION AND INTERPRETATION

The incorporation of plant-specific data in the
parameter estimates used in a PRA produces risk
estimates that reflect the actual plant experience. A
plant-specific data analysis also allows comparison of
plant equipment performance relative to an industry
average (the generic value). A plant-specific data
analysis will identify those components or systems
whose performance is worse than the industry average.
It may also identify components or systemswith better-
than-average performance.

Asindicated in Chapter 4, the raw failure data needed
for aplant-specific data analysisis dependent upon the
scope the analysis. The scope can include accident
initiating events, component failure events and
unavailablilities due to maintenance or testing, and
recovery events. Typical sources of raw dataavailable
at nuclear power plantsfor each of these type of events
are identified in Section 4.1. The information needed
may have to come from multiple sources.

Interpretation and reduction of the raw datais required
to obtain the reduced data used in the parameter
estimation models described in Chapters 2 and 6. The
reduction of the raw data includes consideration of
issues such as pooling of identical component data, the
mode of operation the plant was in when a failure
occurred, and the severity of the event. Additional
issues concerning data reduction, such as aging and
time impacts, are addressed in Chapter 7.

This chapter describes a process for collecting and
reducing raw data for the purpose of generating plant-
specific datafor usein aPRA. Because nuclear power
plants collect and record raw datain different ways, the
process described is genera in nature but, sufficient to
successfully collect and reduce avail able date for usein
aPRA. Some practical concernsand issuesrelated to
the scope and performance of plant-specific data
analysis are also presented.

A process for reducing the data necessary to calculate
initiating event frequencies, component failuredata, and
recovery event data are presented in Sections 5.1, 5.2,
and 5.3, respectively. Thereduced dataobtainedinthis
process are combined according to the guidance
provided in Chapters 2 and 6 to obtain the parameters
necessary to quantify PRA models.

5.1 Initiating Event Data

The methods for evaluating plant-specific initiating
event frequencies provided in Chapter 6 require the
number of initiating events of interest and the time
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period over which these events occurred. Guidanceis
provided in this section for collecting and interpreting
thisrequired data.

5.1.1 Initiating Event Categories

The initiating events of interest in nuclear power plant
PRAs are dependent upon the mode of operation that
the plant is in. For power operation, the events of
interest are generally reactor scrams but can aso
include unplanned forced shutdowns. Typical initiating
events during power operation include multiple
categories of plant transients and loss-of-coolant
accidents (LOCAS). Trips from zero power or low
power may be excluded as valid initiating eventsin a
full power PRA if their occurrenceis precluded during
full power operation. However, low power events
should be considered as valid initiating events at full
power if they can occur during full power. For
shutdown modes of operation, the reactor is aready
subcritical and thusthe events of interest are somewhat
different.  Typical initiating events modeled in
shutdown PRAs include loss of decay heat removal
events, reactivity insertion events, and LOCAsor drain-
down events.

It is a standard practice in PRASs to group initiating
events into categories based on their impact on certain
plant systems, and according to the demandsthey make
on other plant systems needed for accident mitigation.
Examples of typical initiating event categories include
loss of offsite power, loss of feedwater, main steam
isolationvalve (M SIV) closure, and large, medium, and
small LOCAs. Lists of typical transients that have
occurred at nuclear power plants while at full power
have been categorized by EPRI (1982) and the INEEL
(Mackowiak et al. 1985 and Poloski et al. 1999a).
Typical initiating events to consider during low power
and shutdown conditions have al so been established for
both boiling water reactors(BWRs) (Stapleetal. 1999)
and pressurized water reactors (PWRs) (Chu et al.
1993).

5.1.2 DataWindow

The time period for collecting initiating event data
should beasbroad aspossible. Ingeneral, datafromall
of the years of plant operation should be considered.
However, screening of the data can be performed to
eliminateunrepresentative events (seethenext section).
One screening technique used in general practiceisto
eliminate the first year of operationa data as
unrepresentative.
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Sincethenumber of plant eventscan decrease over time
due to improvementsin the design and operation of the
plant, it is desirable to have the data reflect the most
recent operating experience. Thiscan beaccomplished
by considering only the datafrom the most recent years
of operation. Alternatively, an analyst could performa
trend analysis of the data (see Chapter 7).

5.1.3 Initiating Event DataAllocation and

Screening

To alocate plant-specific event data to the initiating
event categories modeled in the plant PRA, it is
necessary to establish the status of the plant, including
itspower level at thetime of the event and theimpact of
the event on the plant systems. Such information is
generally availablein the raw data sources discussed in
Section 4.1 that are available to identify initiating
events (i.e, LERs, scram reports, and monthly
operating reports).

For initiating events during power operation, the events
of concern are those that result in a reactor trip or
forced shutdown. To alocate these events to the
appropriate initiating event category, a data analyst
must examine the sequence of events prior to and
immediately following the reactor trip/shutdown. The
initial plant fault leading to a sequence of events that
eventually result in an automatic or manul reactor trip
or unplanned shutdown is used in categorizing the
event. For example, one plant trip may have been
initiated by spurious closure of the MSIVs and be
identified asan MSIV closuretransient. Another event
may beinitiated by a loss of condenser vacuum which
produces a closure of the MSIVs. Thisevent may also
be placed in the MSIV closure transient category,
unless some significant difference in the plant response
isidentified.

The initiating event data analysis can also be used to
help establish the conditional probability of events
subseguent to the event actually leading to the plant
trip. Examplesof thisinclude the failure of the reactor
protection system leading to an anticipated transient
without scram (ATWS), and the occurrence of arelief
valve sticking open leading to a transient-induced
LOCA.

It is possible that some events leading to plant scrams
(or loss of heat removal during a shutdown mode of
operation) can be eliminated from the data analysis.
One acceptable reason for eliminating initiating event
data involves design or operational changes that may
have been made to reduce the frequency of reactor
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scrams. Such changes to the plant design or operation
can eliminate the occurrence of failures that have
occurred in the past. For example, a plant may have
experienced a significant number of loss of feedwater
events due to the design of the feedwater control
system. As aresult, a utility may have replaced the
feedwater controller with a new, more reliable design
that eliminated the occurrence of loss of feedwater due
to controller faults. Thedataanalyst can thuseliminate
past events initiated by faults in the old feedwater
controller from consideration.

Changesin the plant design or operation can also affect
the classification of events. The following example,
provided in EPRI TR-100381 (EPRI 1992), illustrates
this point. The MSIV vessel level closure set point at
some BWRs has been lowered fromLevel 2to Level 1.
Asaresult, the fraction of initiating events that lead to
MSIV closure may be different before and after the
design change implementation and the total historical
count of MSIV closure events may not be valid for the
current condition of the plant. Oneapproach for dealing
with such a design change is to eliminate al events
prior to the design change that result in MSIV closure
due to the generation of a low vessel level. This
approach has the undesirable impact of reducing the
sample size. An alternative isto review the past events
to determine if the MSIVswould have closed with the
revised closure set point in place. However, this may
bedifficult to determinefromtheavailableinformation.

5.1.4 Selection of Exposure Time

For estimating the frequencies of initiating events that
occur during any plant operating mode, the appropriate
exposure time is the number of calendar years of
operation corresponding to the period of time the
initiating event data is collected. Expressing the
frequency of initiating events on a calender year basis
allows for evaluation of risk in each mode on a
consistent and average basis.

However, it may be necessary to generate the initiating
event frequencies based on the time the plant isin the
particular mode of operation. For example, initiating
events during power operation are often expressed in
terms of events per critical year (one critical year
represents 8760 hours of reactor criticality). Since
genericinitiating event frequencies are often expressed
in events per critical year (Poloski 1999a), calculation
of the plant-specific frequencies in this same unit is
required for combining the two values using Bayesian
techniques (see Section 6.2.2). To determine at-power
initiating event frequencies, the plant-specific
frequencies expressed as events per calender year have



to be increased by dividing by the fraction of time the
plant was at power. This fraction is caled the
criticality factor and may be determined from the
control room logs or the Grey Books where the
residence times in each of the operational modes are
recorded. Criticality factorsfor each plant areprovided
in Appendix H of NUREG/CR-5750 (Poloski 1999a)
for the years 1987 through 1995. Alternatively, the
generic frequencies may be divided by the average
criticality factor (0.75 for the data reported in
NUREG/CR-5750) to obtain generic dataexpressed in
the same units asthe plant-specific data(i.e., events per
calender year. For example, suppose an event is
expected to occur 1.6 times every calender year, on
average, and that the criticality factor for a specific
plantis0.8 (i.e., thereactor has been critical 80% of the
time). Then, the same event correlated to units of
critical years is 2 events per critical year (1.6
events/calender year divided by 0.8 critica
years/calender year).

5.2 Component Failure Data

The raw data sources containing equipment operating
records in a nuclear power plant typically document
tens of thousands of component malfunctions over the
plant’s lifetime. The records may be kept in various
forms including hard copies of maintenance work
orders or acomputerized file. The most useful raw data
sources provide information on the specific component
affected, the observed problem, and the action taken.
To calculate plant-specific component failure ratesand
unavailability from the data in these records, the data
anayst must identify those malfunctions that cause
component functional failures and also determine the
corresponding number of demands or operating time.
This section describes this process and some of the
practical concerns required to extract the necessary
data.

5.2.1 Component Data Identification

The first step in evaluating plant-specific component
failure rates is to identify the components and their
failure modesthat will beanalyzed. Thisstepisusually
donein coordination with other PRA anaysts(typically
those analyststhat generate system model s such asfault
trees). This coordination is critical because it focuses
the component data analysis on only those components
and their failure modes that appear in the PRA models
and establishes the definitions of the component
boundaries.
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It should be noted that extremely reliable components
may never have failed in the history of the plant. This
lack of failure history makesit difficult to estimate the
true failure rate or probability. Reliable components
can generally beidentified by reviewing failureratesin
generic data bases. However, the analyst is cautioned
in the use of this data since a usualy reliable
component may not bereliable at a particular plant. In
addition, itisoftenimpossibleto identify the number of
demands or run times for certain components (for
example, the number of demands placed on a relay)
using the existing plant records.

5.2.1.1 DataWindow

Plant-specific data is selected over a sufficient time
period to provide statistically meaningful results. Use
of data from throughout the plant history is preferred
since they will be less subject to random variability.
Thefollowing examplesfrom EPRI TR-100381 (EPRI
1992) illustrates the amount of datarequired to achieve
an acceptable sample size.

“With nofailures, the statistical significance can
be measured by the 95th upper confidence limit.
To establish a 95th confidence limit on afailure
rate of 1E-3/hr, therequired cumulativeruntime
for the population is 3,000 hours, to establish a
95th confidencelimit of 1E-4/hr requires 30,000
hours. Thus, if afailure rate is believed from
generic data to be relatively low, one should
expect to have to collect asignificant amount of
run time before making an impact on the generic
values.

“When failures are recorded the statistica
significance can be measured by the range from
the 5th to the 95th percentil e confidence bounds.
This decreases with the number of failures. For
aPoisson distribution, the range from the 5th to
the 95th percentile is on the order of 10, with 2
failures. Thus, for greater than 2 failures the
sample is very loosely comparable to the
lognormal with an error factor of 3. Thus, for a
population of components, a total number of
failures of 2 or more is a reasonable sample
when compared with typical generic data bases.
Thisistrue for the binomial distribution also, as
it approximates the Poisson distribution when
the parameter, p, is on the order of 103, These
considerations can be used to establish a
reasonable time frame for data collection.
Suppose, the generic data is on the order of |0
3per demand, and there are four componentsin
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the population with approximately one demand
per component per month per ISl tests. To get 2
failures, we would expect to require about 2/p
demands, or 2,000 demands. There are 48
demands per year, therefore data from 41 years
would be required to produce this statistically
meaningful data. Thisillustratestheimportance
of making sure that all the demands are counted
and also of increasing the size of the population
if at al possible.”

5.2.1.2 Data Collection

For the list of components and their failure modes
selected for data analysis, the system analyst must
retrieve all failure, maintenance, and test records for
each component from the raw data sources generated
during the data window. The required records are
generally obtained based on the component
identification number.  Because the component
boundary caninclude multiple piece parts, therequired
records may be kept under multiple identification
numbers. However, for some components, the data
records for the different piece parts may all be kept
under the same identification number. Thus, it is
necessary to list the identification numbers for al the
piece parts included in the component boundary
definition.

Because component failuresare generally infrequent, it
is preferable to pool the datafrom several components
toobtainalarger database. For example, itiscommon
to group like pumps within a single system into one
population, but less common to group the pumps of
different systems (although it can be acceptable to
group pumps of different systems with similar
characteristics together into one population). Any
grouping of componentsrequires careful consideration
of the similarity of their design (eg., size or
manufacturer), the frequency of operation, their
environmental operating conditions (e.g., temperature,
humidity, and radiation), operatingmodes(e.g., standby
versus normally operating or intermittently operating),
and the medium they carry (e.g., air, pure water, or
borated water). Tests for poolability of data are
described in Chapter 6.

5.2.2 Event Screening and Severity
Classification

The raw data for a specific component will contain
some events that are not relevant to the component
failure modes being analyzed. These events can be
screened fromfurther analysis. Some of the eventswill
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be component failures that should be included in the
data assessment. The type of component failures will
determine how they are classified and subsequently
used to generate the required component failure data.
Guidance for both event screening and classification is
provided below.

5.2.2.1 Event Screening

Oneconsiderationintheidentification of plant-specific
datais whether design changes have been made to the
plant or its components that invalidate some of the
historical data. For example, changing thetype of flow
controller could impact the operation of a particular
turbine-driven pump. Thus, thetotal historical count of
the turbine-driven pump events is not valid for the
current condition of the plant. Typically, the turbine-
driven pump data prior to the design change would be
deleted from the data analysis. However, this has the
undesirable impact of reducing sample size. Another
approach is to investigate whether there is indeed a
significant difference in the fraction of events before
and after thedesign change. Not all thefailures may be
invalidated by the design change and so the historical
data prior to the design change implementation may
have partia validity and could be included in the data
anaysis.

Consideration of design changes is one example of
where censoring of data can and should be performed.
Other reasons can be used for data censoring if they are
well supported and valid. For example, it is not
uncommonto eliminate datafromthefirst year of plant
operation since it represents failures that occurred
during the plant break-in period. However, any data
censoring should be approached carefully to avoid
losing important information and biasing results
(eliminating the first year of data actually makes the
results less biased).

5.2.2.2 Event Severity Classification

As discussed in Chapter 3, component malfunction
events are commonly classified into one of the
following three event severity categories:

* catastrophic failures,
* degraded failures, and
* incipient failures.

Catastrophic failures require some kind of repair or
replacement action onthecomponent inorder torestore
the component to operability. Eventsthat are classified
as catastrophic failures are used in calculating plant-
specific component failure rates and probabilities of



failureondemand. Information on catastrophicfailures
occurring during critical operation is aso used in
calculating maintenance outage unavailabilities.

Degraded failures can prevent a system or train from
meeting the success criteria modeled in the PRA. An
incipient failure is such that there is no significant
degradation in performance but there are indications of
adeveloping fault. The difference between thetwo is
generally a matter of severity. Events classified as
incipient or degraded failures are generally used in
cal culating plant-specific maintenance unavail abilities.
Although both degraded and incipient failures will
typically lead to a corrective action, the corrective
action may or may not make the component unavailable
to perform its function. For example, maintenance on
the operator of a valve that is normally open will not
lead to the unavailability of the valveif is required to
open for system operation. This illustrates the
importance of ascertaining from event records the
modesof acomponent operation that acorrectiveaction
would prevent.

Sometimes the event information is so unclear and
incomplete that a definite classification of the severity
of acomponent malfunction event isnot possible. The
data analyst in this situation is faced with the difficult
task of deciding whether to call amalfunction afailure
or not. The inability to distinguish between severity
levels of failures is particularly important. The
difference between the probabilities of catastrophicand
degraded modesof failurescan besignificant especially
when dealing with highly reliable components that
rarely fail. The difference between no failuresand one
failure in estimating the failure rate is much more than
the difference between 10 and 11 failures. Thus, the
data analyst must be careful when classifying the few
failures that may have occurred. In the absence of
sufficient information, thetendency isto conservatively
record such events as catastrophic failures. This is
reasonable as long as the impact on the fina PRA
results is not significant. For cases where the
judgement of the data analyst isimportant to the PRA
results, it could beincorporated explicitly into the PRA
quantification as a source of uncertainty. Thisissueis
discussed further in Section 6.1.2.2.

5.2.3 Component Data Allocation

This section gives guidelines on the all ocation of plant
specific events to each component failure mode of
interest.  This includes the allocation of events
contributing to the unavailability of components or
systems due to test and maintenance actions. The goal
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of this alocation process is to correlate each event
report with one or more basic events of the PRA model.
This requires that the event report be identified with a
specific component, and that the severity of theevent be
determined and associated with the proper component
failure mode(s).

The use of component identification numbersin event
reportsis generally sufficient to allocate the event to a
particular component. The description of the event can
aso guide the data analyst to a particular component
failure mode (i.e., a basic event in a fault tree), or in
some cases, to a particular gate in a fault tree.
However, a thorough review of the cause of the event
together with a knowledge of the boundaries of the
basic events of the fault trees is generally needed for a
correct alocation to be made. For example, an event
report identified with a specific motor-operated valve
(MQV) that involves the deenergization of a480V bus
should be associated with the busunavail ability and not
theMOV. If theeventisalocal fault of theMOV or its
breaker, it is associated with MOV itself.

As discussed previously, the severity of the event is
important in allocating the event to specific component
failure modes. A catastrophic component failure will
generally result in an extended period during which the
component is unavailable while it is being repaired.
Thus, an event involving a catastrophic failure must be
counted in estimating the failure of the component to
operate and in estimating its unavailability due to
maintenance. Degraded and incipient failures are used
in calculating plant-specific maintenance
unavailabilities. Some degraded failures may result in
sufficient degradation that it can not meet its required
success criteria (e.g., the flow rate for a pump is
reduced to 300 gpm when 500 gpm is required for
success). In such cases, a degraded failure is also
included as a component failure to operate.

5.2.3.1 Component Failure Event Allocation

Because of the variability in the level of reporting
associated with maintenance events, the allocation of
event reports to specific PRA model events can be a
subjective process. The following are some ground
rules to help perform the component failure event
alocation. The majority of these ground rules have
been identified and published in EPRI TR-100381
(EPRI 1992). Additional guidelines are based on the
experience of PRA vendors and NRC data analysts.
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For standby components such as pumps, diesel
generators, and fans, PRA models generally
distinguish between failure to start and failure to
run modes. It is important to understand the
definition of each failure mode in order to
associate historical maintenance events with the
different basic event types. For example, if afault
tree basic event represents a failure of a pump to
start, it usually means exactly that. However, itis
not unusual in PRAS to define “diesel generator
failsto start” as encompassing a failure to start or
a failure during the first hour given that the start
was successful. Whatever definitionsare used, the
event all ocation must be performed to match them.

As indicated in Chapter 2, there are two ways to
model failures to start: the demand failure and
standby failure models. In the demand failure
model, the equipment is ready to operate but for
some reason, does not start or change state when
demanded. In the standby failure model, the
equipment has developed an unannounced
condition that will prevent it from starting when
demanded. When reviewing raw data, it can be
difficult to identify whether acomponent failed on
the demand or prior to the demand. Thus, as
indicated in Section 2.3.4, either model could be
used in this situation. The demand failure model
provides the higher failure probability.

A catastrophic or degraded failure that is revealed
whileacomponent isin the standby mode, and that
resultsin amaintenance action, isaccounted for in
theunavailability dueto maintenance event for that
component. If the failureissuch that it could also
occur while the component is performing its
mission, it should also be counted as a component
failure. For example, external leakage above
allowable amounts from a standby pump that
requires isolation of the pump to repair it,
contributesto the unavailability of the pump dueto
maintenance. Since such leakage could occur
during pump operation, the event should also be
used to determine the failure rate for pump
leakage. The amount of leakage would haveto be
sufficient to prevent thepump trainfromdelivering
the required flow.

Catastrophic failures of standby equipment to start
(or run) that occur during an actual component
demand, contributeto that failuremode. Similarly,
failures to start (or run) during tests that closely
mimicstheconditionsthat the component would be
subjected to during an unplanned demand should
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aso be included in the evaluation for the
component failure mode.

Degraded failures that are not serious enough to
prevent the component from performing its
function are not included as failures of the
component. Expressed in another way, the failure
of the component must match the definition of the
failurein the PRA model. For example, vibration
in apump that results in the pump only delivering
500 gpm instead of the rated flow of 600 gpm is
not afailure event if 500 gpm is sufficient to meet
its function and the pump continued to supply that
flow for aperiod at least equal to the missiontime
required in the PRA model. However, such
failureswould beincluded inthe unavailability due
to maintenance since their effect is to induce
maintenance activity.

There is a caveat to this guideline to consider. |If
the degraded failure is reveded in a short test
duration, an analyst cannot be sure the component
would have succeeded over its mission time. In
this case, the analyst can attempt to extrapol ate the
rate of degradation to determine if the component
would meet itsfailure criteria sometime during its
mission time. For example: a pump develops a
slow oil leak during atest. If therate of leakageis
such that the pump would run out of lubricating oil
during the required pump missiontime asmodeled
inthe PRA, than the event is considered as apump
failure to continue to run.

Degraded conditions for which a failure would
haveoccurredif the system had been demanded are
considered a failure. For example, if an operator
discovers that a pump had no oil in its lubrication
reservoir, the pump may have started (unlessthere
wasan interlock preventing apump start onlow oil
level) but likely would not haverunlong. Ineither
case, this event would be counted as a failure to
start.

If the event report identifies that the failure of
component A isthe result of the failure of another
component B that is modeled explicitly in the
PRA, the event is associated with component B
and not with component A. For example, failures
of apump from plugged suction screens should not
be allocated as pump failures if the screens are
modeled separately.

Theclear identification of thecomponent boundary
is an important factor in these situations. For
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example, the alocation of an event that identifies
thefailure of an emergency pump duetothefailure
of a safety actuation signal is dependent upon
whether the actuation logicisincluded in the pump
boundary or is treated as a separate event in the
model. Typicaly, the components related to the
safety actuation signal arenot included in the pump
boundary definition and this event should not be
counted as a pump failure. However, if the safety
actuation signal isincluded in the pump boundary,
then the command fault should be included as a
failure mode of the pump.

An event reporting a degraded or failed state of a
redundant piece part should be excluded from the
failure eventsif the component boundary includes
the redundant piece parts. For example, if adiesel
generator has two redundant air start motors that
are included in the diesel generator boundary
definition, failure of one air start motor would not
be counted as a failure of the diesel generator.
Thisexampleillustrates how acoarse definition of
a component boundary can result in the failure to
account for some degraded component states.

If a documented failure during a test or actual
demand could not be repeated on subsequent tries,
it may not have be included as a potential failure.
Similarly, events which are very quickly
recoverable may aso not be considered potential
failures (the recovery should not beincluded inthe
PRA model) . Whether an event meeting either of
these situations should be considered afailureisa
function of the success criterion for the component
in terms of the time window within which it hasto
operate. For example, the spurious closure of an
MOV may prevent theinjection of coolant into the
corefrom aparticular system. However, the event
records may indicate that in all such occurrences,
the valve was quickly reopened before coolant
levels dropped to unacceptable levels. In such
cases, the events should not be considered as
failure events for the MOV.

Successive failures of the same components over
short time intervals should be counted as a single
failure. Similarly, failures of a component during
post-maintenance testing where the failure is
related to the maintenance or to an earlier failure
that the maintenance was trying to correct should
be considered as a continuation of the original
failure and should be disregarded. The successive
failures are because proper maintenance was not
performed to fix the initial problem, and the
component is still in the failed state.
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11. Iffailuresresultingfrom human errorsafter testing,
maintenance, and instrument miscalibrations are
explicitly included in system models, these events
should not be included as component hardware
failureevents. Such eventsaretypically quantified
using human reliability analysis methods.
However, some PRAs have not explicitly included
these human errors in the models. In such cases,
the contribution from human-related failures
should be incorporated into the appropriate
component failure rate or probability.

12. An event reported as a failure to meet technical
specifications, but which would not result in a
catastrophic failurein the PRA sense should not be
included, but it may lead to a maintenance
unavailability. For example, thefailure of adiesel
generator to start and pick up loads within 10
secondsmight beareportablefailurefor regulatory
purposes. However, in the PRA sense it is not a
failure if the diesel did not pick up loads in 10
secondsandthe“failure” did not haveadiscernible
effect on the ability of the plant to mitigate an
initiating event. However, this failure would
require maintenance to alleviate the fast loading
failure.

13. Failuresthat occur under abnormal environmental
conditions should be segregated from failures that
occur under normal conditions. Thesefailurescan
identify important interactions between systems
and thresholdsfor failure that should be accounted
for in the PRA. In genera, PRAs assume
components fail under harsh conditions. Under
this assumption, actual failure events in harsh
environments can be eliminated from
consideration. For example, actual failures of
€l ectrical componentsfollowing alossof aheating,
ventilation, or air-conditioning (HVAC) system
should be eliminated from the data analysis if the
HVAC dependency is modeled explicitly in the
PRA model and the component is always assumed
to fail under those conditions. However, if there
are al so many component successes under thesame
harsh environments, than a component failure
probability under those conditions can be
calculated and used in the PRA model conditional
on the occurrence of the harsh environment.

5.2.3.2 Allocation of Unavailability Data

Unavailability occurs primarily due to maintenance
activities but some minor contributions can also result
from testing performed during periodic surveillance
activities. These unavailability contributions can be
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included in asystem model at acomponent, segment, or
train level. In addition, separate basic events for
mai ntenance and testing unavailabilities, or for planned
and unplanned unavailabilities can be included in
system models. In a data analysis, the allocation of
unavailability data must be performed to match the
basic events in the system models. The following
guidelines are useful in alocating events for
determining unavailabilities due to test and
maintenance. These ground rules have been extracted
from EPRI TR-100381 (EPRI 1992) and from the
experience of PRA vendors and NRC data analysts.

1. A maintenance event must result in the component
not being capable of performing its function, as
modeled in the PRA, in order to contribute to the
component or train unavailability. For example,
maintenance performed on anormally open MOV
(that is required to stay open during its mission
time) with the valve locked in the open position is
not an event of interest. Similarly, a maintenance
event involving someelectrical repairsonan MOV
that do not necessitate moving it from the position
required for successful system operationisalso not
an event of interest. However, in either case, if the
valve were required to close for any reason, then
both events would be of interest.

2. Sometesting procedures may result in component,
train, or system unavailability. For example, afull
flow test of a system through a test path could
require that a normally closed injection valve be
disabled in order to prevent inadvertent injection.
The injection valve would be unavailable during
thetest period. However, systems often havelogic
which would actuate the system even if it was
being tested. In this situation, there would be no
system unavailability due to thetest. A review of
testing procedures coupled with knowledge of
system actuation logic is required to determine if
testing can result in component, train, or system
unavailability.

3. If amaintenance report indicates that one or more
trains of front line systems are unavailable due to
maintenance activities of a support system, the
unavailability is associated only with the support
system.

4. If while performing maintenance on a support
system, maintenanceisalso performed on thefront
line system it supports, the unavailability of the
front line system should be counted if the two
maintenance activities are not always performed
together.
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If an unavailability on one component is actually
due to maintenance activity on another component
that is included in the PRA model, the
unavailability is associated with the second
component only. For example, a declared
unavailability of a pump due to maintenance on a
room cooler should be included only as a
mai ntenance on the room cooler if the dependence
of the pump on the room cooler was modeled
explicitly. Asanother example, if the maintenance
results in the unavailability of a source of suction
to a pump (e.g., maintenance on a supply tank),
thenitisbetter to model thisasan unavailability of
the source rather than the pump. Assigning the
event to the source unavailability is absolutely
required if the source is shared with other pumps.
In general, maintenance unavailability should be
allocated consistent with the component
boundaries and system modeling.

There may be events where the unavailability of a
component in a system model is due to
mai ntenance on acomponent that isnot includedin
any systemmodel. In such cases, the event should
be included as an unavailability of all the modeled
components removed from service. For example,
the contribution of maintenance on a drain valve
for a pump train will likely not be modeled in the
PRA but should beincluded as a contributor to the
unavailability of the entire pump train since it
would likely result in isolation of the train.

Coincident outage times for redundant equipment
(both intra- and inter-system) should reflect actual
plant experience. For some systems, the available
redundancy may be higher than that limited by
technical specifications. In thiscase, maintenance
may be performed on two out of three trains at the
same time. The modeling of dual component
maintenance events in the PRA should be
consistent with the actual plant experience. Note
that because of the allowed outage time limitations
in technical specifications, the maintenance
unavailability may be lower when two trains are
taken out for maintenance.

The maintenance data at the plant most likely will
contain planned and forced maintenance. Most of
the maintenance events will be forced type. If the
PRA models the two types of maintenance
separately and it is possible to distinguish between
the two typesin the data, these should be recorded
Separately.
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In some cases, more than one maintenance activity
may be recorded on an event report. When this
occurs, each separate maintenance activity must be
considered at the highest possible component level.
For example, if the suction or discharge valve of a
pump requires maintenance, the pump would be
tagged out for the duration of the work. As
previously discussed, the maintenance
unavailability should be associated with the valve.
If during this maintenance outage, some minor
mai ntenance was performed on the pump, than the
entire maintenance outage can be recorded as a
pump maintenance event. The duration of the
mai ntenance would be the time between when the
first component is tagged out and when the last
component istagged in.

However, if themai ntenanceunavailability isbeing
modeled in the PRA at the train level, all
maintenance activities on any component are
included. Inthissituation, each maintenance event
on any component in the train is included. If
multiple components are tagged out during the
mai ntenance event, the duration of the maintenance
would be the time between when the first
component is tagged out and when the last
component is tagged in.

Functional dependencies represented in the PRA
models must be considered in the allocation of
maintenance events. For example, if a chilled
water pump is taken out for maintenance, together
with an HVAC chiller that it supports, only the
chilled water pump iscounted asbeing unavailable
for maintenance. The functional dependency
between the two components in the PRA model
will account for the chiller being unavailable when
the chilled water pump is under maintenance.

The cold shutdown periods in the time window
over which data are being collected should be
defined. The maintenance performed during
shutdown is not included in the determination of
component unavailability during power operation.

Specia attention is required when allocating
maintenance events for systems or components
shared between units at a site.  The technical
specifications pertaining to shared systems can be
different depending on the status of both units.
The PRA model may include basic events to
account for the dependence of the system
unavailability on the mode of operation for each
unit. I1n such cases, the maintenance events should
be allocated to match those event definitions.
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5.24 Component Exposure Evaluation

Thedataidentificationand all ocation processdiscussed
in the previous sections results in the identification of
the number of events associated with each component
falure mode. To generate component failure
probabilities and rates, it is aso necessary to estimate
the operational exposure of the components. Theterm
“exposure” refers to the amount of component
operating timewhen considering failureratesand to the
number of demands (or cycles) when considering
failure probabilities.

Exposure data are normally developed by reviewing
plant documents, eg., test procedures and the
knowledge of component function (standby, normally
operating, etc.), and systemslineup. In some cases, an
operation time meter provides information about the
cumulative hours of operation of a component.

Development of exposure data involves many
judgmentsand assumptions. The guidance providedin
this section sometimes leads to an approximate value
for the exposure data, which may differ substantially
from the actual experience. Although typicaly the
range of uncertaintiesassociated with the exposure data
are much smaller than those for the failure data, there
may be cases where the combined effect of uncertainty
about the exposure and failure has a significant impact
on the estimate of the failure rate or probability. The
issue of uncertainty in the data (both in the failure and
exposure data) is addressed in Section 6.1.2.2 of this
handbook.

The following sections outline the process for
estimating the number of demands and the operating
time for each component. Much of this guidance is
taken from EPRI TR-100381 (EPRI 1992).

5.2.4.1 Time-Related Exposures

The operating or exposure time for a component is
dependent upon whether the component is normally
operating or is in standby. For components that are
required to continuously operate during a particular
plant mode, the operating time can be easily established
by directly relating it to the time spent in that plant
mode.

Some plant systems, sometimes called aternating or
intermittently operated systems, have multiple
redundant trainswhere only a subset of those trainsare
required to operate at any onetime. A standard practice
at nuclear power plantsisto alternate thetrainsthat are
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operating and in standby at specified intervals. The
times of operation and changeover from one train to
another are typically recorded in the control room or
some other log book. However, since the pumps in
different trains of asystemare usually grouped together
for dataanalysis, it isnot necessary to have an accurate
log of how long an individual pump was in operation.
Instead, it is only necessary to evaluate the exposure
time for the pumps as a group. For example, if two of
three pumps are normally operating in aparticular plant
mode, the total operating time for that pump group is
twi ce the calendar time spent by the plant in that mode.

For a component in a standby system, the operating
time is generaly given by the time the system is
operated during testing. Note that an important
criterion for including test data when evaluating both
the failure and exposure data is that the test should
mimic the component operation that would be required
in an unplanned demand. The testing period may be
recorded in control room logs or other logs. The
operating time during testing for a population of
components may also be estimated by summing the
product of the component population, test frequency,
and test duration for each test during the period where
failure data was collected. It should be noted that for
most plants, and most components, the cumulative run
time during testing is relatively short.

Some systems that are in standby during normal power
operation are aso used during other modes of
operation. For example, the residual heat removal
(RHR) systemin both BWRsand PWRsis used during
shutdown. Similarly, a standby system may be used
during power operation for a special purpose. For
example, the RHR system in a BWR may be used to
increase or decrease the suppression pool level. Thus
the operating times during these modes of operation
should be included, in addition to the run times during
testing, if any failures during these modes are pertinent
to the safety function of the system (e.g., the entire
RHR pump operating history may be pertinent sincethe
pump must operate when the RHR system is used to
respond to an accident). In such situations, thetimes of
startup and shutdown of the standby system may be
recorded in the control roomlogs. Alternatively, if the
component is required to continuously operate during
shutdown , the operating time can be easily established
by directly relating it to the time spent in that plant
mode.

5.2.4.2 Demand-Related Exposures

To evaluate the probability of the failure of a
component to start or change states, the number of
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demands experienced by the component must be
evaluated. Although this would seem to be a simple
process, in practice the number of demandsisoften one
of the most difficult parametersto calculate accurately.
Component demands from all contributors should be
included. This can include contributions from testing,
automatic and manual actuations, and corrective
maintenance. The methods of cal culating the number
of demands from each of these types of demands are
explained below.

5.2.4.2.1 Test Demands

Periodic testing is an important source of demands for
components in standby systems. The surveillance
testing and required frequency for the plant is
performed in accordance with the technical
specifications. However, some plants may choose to
perform testing more frequently than required by the
technical specifications.

An important criterion for including test data in
evaluating both the failure and exposure dataiis that the
test should mimic the component operation that would
be required in an unplanned demand.

Surveillance procedures identify the components that
must change state at each test. For each surveillance
test pertinent to the system, it is important to identify
which components are operated, the unavailability of
the system during the test (if applicable), and the
frequency and duration of thetest. A functional test of
apump often requiresthe operation of valvesaswell as
the pump and is an important source of information on
valve demands. Neglecting demands on components
fromtests on other components can lead to asignificant
underestimation of the total number of demands. The
number of test demandsfor individual components may
be determined from the actual number of tests as
recorded in a control room or test logs or be estimated
based on the test frequencies.

It should be noted that the test may not be a valid test
for all the componentswithin the component boundary.
For example: the automatic initiation portion of a
component circuit will not betested during atest where
the component is manually initiated. For components
such as diesel generators, tests which start the engine,
but do not close the breaker onto the bus are not true
tests of the capability of the diesel generator to provide
the necessary load. Note that if there is a
subcomponent that is included in a component’s
boundary which is not tested along with the rest of the
component, it is desirable to analyze it as a separate
component.



5.2.4.2.2 Automatic and Manual I nitiation

Actual unplanned demands on components should be
included in the demand count. For standby safety
system components, some unplanned demands can be
traced back to the occurrence of automatic initiation
signals (both actual and spurious signals). These
signalsinclude emergency core cooling system (ECCYS)
initiating signals, turbine trip signals, losses of offsite
power, and reactor scrams. Different groups of
component may be initiated by different signals or sets
of signals, depending on the functions and the system
they arein. Information on the components that can be
initiated by each signal can be identified through
knowledge of the plant. For example, al low-pressure
ECCS pumpsinaBWR could beinitiated by an ECCS
signa but the motor-operated valves in the ECCS
injection paths would require an additional low vessel
pressuresignal beforethey would open. Informationon
the historical number of occurrences of actual or
spurious signals should be available from the plant
recordssuch asthe monthly operating reportsor control
room logs.

Inaddition, manual actuation of systemsor components
may occur during plant operation. Two examplescited
above in the discussion of operating time contributors
are also pertinent here. The first is the case where
aternating trains are placed in operation and standby.
Theact of switching operating trainsresultsin demands
on components. The second case involves the use of
standby systems to perform special functions. For
example, the RHR system in a BWR may be used to
increase or decrease the suppression pool level. These
special usesalso result in component demands. In both
cases, the times of startup and shutdown of the standby
system may be recorded in the control room or other
types of logs.

Finally, manual actuation of systems to respond to
adverse plant conditionsisanother source of unplanned
demands that needsto be accounted for in the exposure
evaluation. The occurrences of such demands are
generaly recorded in LERs, control room logs, and
monthly operating reports.

5.2.4.2.3 Corrective Maintenance

Maintenance can result in demands on components in
several ways. Before the maintenance activities are
begun, the operating and maintenance staff make the
maintenance action safe for both personnel and the
system by disabling and tagging out appropriate
components. This then requires some components to
change state resulting in a demand.
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In many instances, demands are placed on components
that are not the subject of the corrective maintenance.
The most obvious demands occur when acomponent is
returned to service. Before restoring the component to
service following maintenance, a complete functional
checkout is usually performed on the component and
other componentsin thefunctional loop. The number of
demands on the components resulting from corrective
maintenance is obtained from the number of
maintenance acts on specific components and an
identification of what other components may have to
change state to complete the functional test. Notethat
per the guidance in the ASME PRA Standard
(ASME 2002), demands from post-maintenance
testing should be excluded from the exposure
evaluation for the component under maintenance.

Another example of a demand resulting from
maintenance involves testing of redundant trains. If
equipment fails in some systems, the technical
specifications may require that redundant components
be checked for operability beforemaintenanceto ensure
that they are available for service. In many cases, an
increased frequency of surveillance testing of such
redundant componentsisrequired. A typica example
of this is reflected in the technical specifications for
emergency diesel generators. These demands need to
beincluded in the data analysis.

As indicated in the discussions presented above,
devel opment of exposuredatainvolvesmany judgments
and assumptions. Although typically the magnitude of
error or the range of uncertainties associated with the
exposure data are small compared with those of the
failure data, there are cases where the combined effect
of uncertainty about the exposure and failure has a
significant impact on the estimate of the failure rate.
The data analyst should consider some level of
uncertainty in using such estimates.

5.25 Determination of Unavailable Time

Following the identification of the maintenance events
contributing to the unavailability of acomponent, train,
or system, thetimethe component isunavailable during
each event isdetermined. Theunavailability timeisthe
time between when the component is removed from
service until it is actually restored to service. In many
cases, maintenance work orders will provide this
information by identifying one or more tag-ins and tag-
outs for equipment with the date and time of day that
both occur. Using these times to determine the
unavailability time may bealittle conservative because
the repair may be completed before the component is
declared tagged in.
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Some maintenance work orders may contain multiple
tag-outs and tag-ins for a given component. If the
component was operable between these periods, than
the unavailability is the sum of the individual
unavailability times for each period. However, if the
component was inoperable between the periods, than
theunavailability time startsat thefirst tag-out and ends
at the last tag-out.

Unfortunately, the actual time of unavailability may not
be recorded in maintenance work order forms. In many
cases, the time recorded may reflect aprior estimate of
how long the maintenance activity will take, may
represent the man-hours taken to complete the task
rather than calendar time, or may include time to
compl ete paperwork.

When the unavailability time is not specified in a
maintenance work order, other plant documents should
be examinedfor that information. Maintenanceactivity
information may be recorded in other documents such
as operator logs or component operating logs. For
example, a maintenance activity on a safety-related
component will start the clock for alimiting condition
of operation (LCO) specified in the technical
specifications, and this should be recorded in some
place, usually the control room log. The time when the
function is restored should aso be recorded.
Unfortunately, not all maintenance events result in an
L CO and thustiming information may not be available.

When reliable estimates of the start and finish timesfor
a maintenance event are not available, one recourse is
to ask plant maintenance and operationsstaff to provide
estimates of the ranges in the unavailable time per
mai ntenance act for the components. Another recourse
is to use data provided from some maintenance events
to estimate the unavailability for other events.

5.3 Recovery Event Data

In PRA, thereis a clear distinction between actions to
repair components or systems and actions to recover
components or systems. Recovery actions involve the
use of aternate equipment or means to perform a
function when primary equipment fails, or the use of
alternate means to utilize equipment that has not
responded as required. Examples of recovery actions
include opening doors to promote room cooling when
anHVAC systemfails, recovering grid-rel ated | osses of
offsite power by rerouting power, manually initiating a
system when the automatic actuation signal fails,
bypassing trip logic using jumper cables, and using a
handwheel to manually open an MOV when the motor
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failsto operate. Repair actionsinvolvetheactual repair
of the mechanism which caused acomponent or system
to fail. Examples of repair actions include repairing
weather-related losses of offsite power, repair of a
pump thet failed to start, or replacement of a failed
circuit breaker.

PRA models typically include a number of recovery
actions of thetypeidentified above. However, because
recovery actions can involve complicated actions that
are governed by procedures, most are typicaly
evaluated using HRA methods. A general exceptionis
the treatment of offsite power recovery where the
required recovery actions are often not within the
jurisdiction of the plant personnel. Thus, offsite power
recovery datais collected and reduced for usein PRAS.

The repair of componentsis generally not modeled in
PRAs since:

» the time available to repair most components is
generaly too limited (i.e.,, core damage would
occur before the repair is completed),

*  because repair is an action that is not aways
governed by procedures and thus difficult to
justify,

» the availability of spare parts can not aways be
certain, and

*  because abnormal procedures generally direct
operators to use alternative equipment as a first
priority.

There are aways exceptions to these general
observations. For example, the replacement of fusesis
an action identified in some fire abnormal procedures
and can be accomplished rather quickly since spare
fusesareavailable. Aswitharecovery action, either an
HRA or data reduction approach could be utilized to
generate afailure probability for arepair action.

The modeling of recovery and repair actions in PRA
reflects the need to accomplish the action within some
timeframe (e.g., before core damage occurs). Thus, the
collected data must include both the time of failure and
recovery to be utilized in the PRA. This section
provides guidance on the process for collecting and
reducing recovery and repair data. A description of the
typeof datathat isreviewed inthiseffort and guidelines
for allocating that data.

5.3.1 Recovery Data ldentification

Recovery and repair information can generaly be
extracted from maintenance records and LERs that



identify component and system failures. Thus, the
evaluation of recovery and repair information is an
offshoot of the component failure data review. In
general, only data from actual component and system
demands should beincluded in the recovery/repair data
evaluation.  When failures occur during actual
demands, operators should be strongly motivated to try
to recover the component or system.

However, if acomponent or system failsto start during
asurveillancetest, the need for repair isnot as pressing
and thus not reflective of accident conditions. For this
reason, recovery and repair information for failures
during surveillance tests should be excluded from
recovery/repair probability evaluation.

5.3.2 Recovery Data Allocation

Since component recovery data evaluation should be
performed in conjunction with the component data
allocation, the general rules provided in Section 5.2.3
apply. In addition, the following guidelines are
provided to address allocating recovery data for other
events modeled in the PRA (eg., restoring offsite
power or reopening main steam isolation valves):

1. Only failures during actual demands are included.
Failures during surveillance tests are excluded as
being nonrepresentative of accident conditions.
For the failures during actual demands, the data
analyst should assess whether the recovery/repair
action was performed under similar stresses that
would occur under accident conditions. Atypical
events should be eliminated or considered to be
sources of uncertainty.
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For each failure event, the recovery/repair time is
the time between when the failure first occurs and
thetimewhenitisreturned to service. Usingthese
times ensures that the time of the failure, the time
required to recognize it has occurred, the time to
obtain spare parts if required, the actual time to
repair the component or system, and the time to
return the component to service arereflectedinthe
recovery/repair time. Events that do not include
either time should beexcluded fromthe eval uation.

Recovery information on systems or components
resulting from an initiating event can be extracted
from LERs or scram reports. For example,
reopening M SIVsafter their consequential closure
(i.e., they are signaled to close following some
other failure) may be included in a PRA for some
initiators. The recovery time for such events are
evaluated from the time the initial failure occurs
leading to MSIV closureto until the closure signal
isremoved (by either fixing the original failure or
by bypassing the signal) and the MSIVsin one hot
leg are reopened. The time to perform other
actions that may be required to maintain the
MSIVsopen(e.g., starting vacuum pumps) areal so
included in establishing the recovery time.

Recovery information on systems or components
causing an initiating event can also be extracted
from LERS or scram reports. For example, the
time to recover offsite power initiating events can
be extracted from LERs. However, LERSs should
also be searched for occurrences of offsite power
failurefollowing other initiating events. Recovery
information should also be extracted for these
events.
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6. PARAMETER ESTIMATION AND MODEL VALIDATION

6.1 Overview

6.1.1 Chapter Contents

This chapter is the heart of the parameter-estimation
portion of this handbook. Section 6.1 gives an impor-
tant discussion of Bayesian and freguentist inference,
and also a brief discussion of some topics outside the
scope of the handbook. The rest of Chapter 6 presents
statistical techniques for analyzing data for various
parameters. Sections 6.2 through 6.7 cover exactly the
same types of data as Sections 2.2 through 2.6, in the
sameorder. Thetwo kinds of failureto start in Section
2.3 are split into two sections here, 6.3 and 6.4. The
three most extensive and fundamental sections are 6.2
(initiating events), 6.3 (failures on demand), and 6.6
(recovery times and other durations). The remaining
sections draw on material from these three. Figure 6.1
shows the contents in a schematic way, with arrows
indicating the logical dependencies. For example,
Section 6.4 uses material presented in Sections 6.2 and
6.3.

Each section considers both parameter estimation and
model validation. These two topics are considered

together because checking theassumptionsof themodel
(model validation) is a necessary part of any analysis.
Separating the model validation from the parameter
estimation might give the erroneous impression that it
isal right to estimate parameters without checking the
assumptions, or that the checks can be performed asan
afterthought.

Under parameter estimation, both Bayesian and
frequentist methodsarepresented. Under model valida-
tion, both graphical methods and formal statistical tests
are given.

Much thought wasgiventotheorder of presentation: do
we present the Bayesian estimates first or the
frequentist estimates? In Chapter 6, the freguentist
estimates are typically given first, not because they are
more important or more highly recommended, but only
because the frequentist point estimatesare very simple,
the simplest most natural estimates that someone might
try. We cover them quickly before moving on to the
more sophisticated Bayesian estimates. In the cases
where the frequentist estimates are not simple (such as
certain distribution models for durations), Bayesian
estimation is discussed first.

Portions of Chapter 2

\

6.1 Overview

6.2 Initiating Events
6.2.1 Frequentist Estimation
6.2.2 Bayesian Estimation
(many priors considered)
6.2.3 Model Validation

el

6.3 Failure to Change State:

Failure on Demand
6.3.1 Frequentist Estimation
6.3.2 Bayesian Estimation
(many priors considered)
6.3.3 Model Validation

6.6 Durations
6.6.1 Characterization of
Distributions
6.6.2 Model Validation
6.6.3 Nonparametric Density
Estimation

o~

i

6.4 Failure to Change State:

6.5 Failureto Run

6.7 Unavailability

Standby Failure

Figure 6.1. Schematic outline of Chapter 6.
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Parameter Estimation and Model Validation

Asinmuch of thishandbook, general explanationsare
given in Roman typeface, with boldface used for new
terms where they are introduced or defined. Arial font
is used for examples, and for any extended discus-
sion that applies only to a particular example.

6.1.2 Bayesian and Frequentist Inference

Probahilistic risk assessment (PRA) analyzes accident
sequences in terms of initiating events, basic events,
and occasionally recovery events.

This handbook is concerned with estimating the fre-
guencies of initiating events, the probabilities of basic
events, and the distributionsof recovery timesand other
durations. These estimates are propagated through
logical relations to produce an estimated frequency of
the undesirable end state, such as core damage. More-
over, the uncertainties in the parameter estimates must
be quantified, and this must be done in a way that
allowsthe uncertainty inthefinal estimateto be quanti-
fied.

Two approaches to estimating parameters are the
Bayesian method and the frequentist, or classical,
method. Thetwo approachesare summarized here, and
also in Appendix B.

Both approaches use probability distributions to de-
scribe the behavior of random outcomes, such as a
random number of initiating eventsor arandom number
of failures to start. The two approaches differ in the
way they treat uncertainty of unknown parameters.

In the Bayesian setting, probability is a measure of
uncertainty, a quantification of degree of belief. The
Bayesian methodol ogy is used to modify uncertainty in
alogically coherent way, so that “degree of belief” is
rational, not merely personal opinion. Inthismethodol-
ogy, each unknown parameter is assigned an initial
prior probability distribution. Thisdoes not mean that
the parameter varies randomly, but only that it is
unknown, with the probability distribution modeling
belief concerning the true value. Based on data, the
analyst’s prior belief about the parameter is updated,
using Bayes Theorem. The fina inference statement
uses the posterior distribution of the parameter to
quantify thefinal uncertainty about the parameter. Itis
conditional onthe observed data. Siuand Kelly (1998)
give a smple but thorough introduction to Bayesian
estimation in the PRA context.

Thefrequentist approachisquitedifferent. The proba
bility of a random event is defined as the long-term
fraction of times that the event would occur, in alarge
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number of trials. Probabilitiesareused only for random
guantities, the possible data values. Probability distri-
butions are never used to describe parameters, because
the parameters are not random. When quantifying
uncertainty in an estimate, a frequentist asks questions
such as, “Under similar conditions, what other data sets
might have been generated? From data set to data set,
how much variation would be seen in the parameter
estimate? For any one data set, how far might the
estimated parameter be from the true parameter?” Any
prior or external information about the parameter value
isignored.

Statisticians have argued vigorously over which ap-
proach is preferable. When estimating parameters for
PRA, the Bayesian approach clearly works better, for
two reasons. First, data from reliable equipment are
typically sparse, with few or even zero observed fail-
ures. In such cases, it is reasonable to draw on other
sources of information. The Bayesian approach pro-
vides a mechanism for incorporating such information
asprior belief. Second, the Bayesianframework allows
straightforward propagation of basic event uncertain-
ties through alogical model, to produce an uncertainty
on the frequency of the undesirable end state. To do
this, it assigns a probability distribution to each of the
unknown parameters, draws a random sample from
each, and constructs the corresponding sample for the
frequency of the undesirable end state. The frequentist
approach cannot handle such complicated propagation
of uncertainties except by rough approximations.

Frequentist methods have their uses, however, evenin
PRA. Box (1980) writes “sampling theory [the
frequentist approach] is needed for exploration and
ultimate criticismof an entertained model in thelight of
current data, while Bayes' theory is needed for estima-
tion of parameters conditional on the adequacy of the
entertained model.” Thisviewpoint agreeswith current
PRA practice. The primary use of the frequentist
approach isin preliminary examination of the data, to
check the correctness of model assumptions, and to
decide which model to use. For example, frequentist
methods can help the analyst decide whether data sets
may be pooled or whether a trend is present.
Goodness-of-fit tests and calculation of statistical
significance are commonly used frequentist toolsinthis
context. Then Bayesian methods are used for estimat-
ing the parameters. In addition, frequentist estimates
are often simpler to calculate than Bayesian estimates,
and therefore are useful for rough approximate calcula-
tions.

Table 6.1 summarizes the above points.
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Table6.1 Comparison of Bayesian and frequentist approachesin PRA.

Frequentist

Bayesian

Interpretation of probability

Long-term frequency after many
hypothetical repetitions.

Measure of uncertainty,
quantification of degree of belief.

Unknown parameter

Constant, fixed.

Constant, but assigned probability dis-
tribution, measuring current state of
belief.

Data

Random (before being observed).

Random for intermediate
calculations. Fixed (after being
observed) for the final conclusions.

Typical estimators

Maximum likelihood estimator (MLE),
confidence interval.

Bayes posterior mean, credible
interval.

Interpretation of 90%
interval for a parameter

If many data sets are generated, 90% of
the resulting confidence intervals will
contain the true parameter. We do not

We believe, and would give9to 1
oddsin awager, that the parameter is
intheinterval.

unlucky ones.

know if our interval is one of the

Primary usesin PRA

prior distribution.

1. Check model assumptions.
2. Provide quick estimates, without
work of determining and justifying

1. Incorporate evidence from various
sources, as prior distribution.

2. Propagate uncertainties through
fault-tree and event-tree models.

6.1.3 Uncertainties Other Than
Parametric Uncertainty

The above discussion might suggest that uncertainty in
the value of parametersisthe only uncertainty thereis.
That is not the case. Parameter uncertainty, stemming
from having only a relatively small set of randomly
generated data, is the simplest uncertainty to address.
It is the primary uncertainty considered in this
handbook of parameter estimation. However, the
following kinds of uncertainty can also be considered.
Because these subsections discuss material that is
outside the scope of the handbook, first-time readers
may wish to skip immediately to Section 6.2.

6.1.3.1 Uncertainty from Nonrepresentativeness
of the Data Sour ces

Oneissueto consider isthat the datacomefrom settings
that do not perfectly match the problem of interest. In
generd, thisis adifficult issue. For example, suppose
one situation is of interest, but the data come from
equipment with a different manufacturer or different
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design, or from equipment operated under different
conditions, or maintained with different practices. Then
it is difficult to quantify the relationship between the
dataand the problem of interest. Engineering judgment
is used, and to be conservative the uncertainty
distribution is often assigned alarger variance than the
data alone would call for.

One tractable case is uncertainty of the value of a
parameter for one data source (such as one nuclear
power plant), when data are available from many
similar but not identical data sources (other nuclear
power plants). This case can be formulated in terms of
ahierarchical model, and analyzed by empirical Bayes
or hierarchical Bayes methods, as discussed in Chapter
8 of this handbook.

6.1.3.2 Uncertainty in the Data Counts
Themselves

There can be uncertainty in the data counts themsel ves.
For example: it may be unclear whether a particular
event should be counted as a failure, or the number of
demands may not be known exactly. A Bayesian
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method for dealing with uncertainty in PRA data was
first proposed by Siuand Apostolakis (1984, 1986), and
has been used by severa authors, including Mosleh
(1986), Mosleh et al. (1988, Section 3.3.4.4), and Martz
and Picard (1995). Asoutlined by Atwood and Gentil-
lon (1996), uncertainty in classifying the datayields a
number of possible data sets, each of which can be
assigned asubjective probability. Thesimpleapproach
isto use an “average” data set, a“best estimate” of the
data, and analyze it. The uncertainty in the data is
ignored, logt, at that point. A better approach is to
analyze each data set, and combine the results. Each
analysis produces a Bayesian distribution for the
unknown parameter(s), and the final result isamixture
of these distributions. This approach includes the data
uncertainty in the analysis, and results in wider
uncertainty interval sthanthesimpleapproach. Thetwo
approaches are diagramed in Figure 6.2.

Many possible data sets,
with subjective probabilities

e ™

Many analysis results Mean data set

! l

Mean of results Results from analysis
of one data set

Averaging the
analyses accountsfor
mor e uncertainty.

Analyzing the
aver age accounts for
less uncertainty.

Figure 6.2 Two possible analysis paths for uncertain
data.

Data uncertainty has become the subject of recent
journa articles, such as the by Martz and Hamada
(2003), who develop a fully Bayesian method. Also,
this topic is closely related to a statistical technique
called“multipleimputation” (see Rubin 1996), inwhich
amoderate number of data setsare randomly generated
and then treated according to theleft pathin Figure 6.2.
Further treatment of this topic is beyond the scope of
this handbook, but the reader can find additional
guidance in the references cited above.

6.1.3.3 Uncertainty in the Correct Model to Use

There can be uncertainty in which probability model to
use. For example, there may be adlight trend, but it is
borderline. Should a trend be modeled? Chapters 6
and 7 of this handbook discuss model validation
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extensively.  However, model vaidation, which
concludes that the model is either “adequate” or “not
adequate,” is only a first step toward addressing this
issue.

A more ambitious approach would be to quantify the
degree of belief in each of a number of models, and
propagate uncertainty in the models into the overal
conclusions. This approach can use the predictions of
various models as evidence in a formal Bayesian
estimation procedure. See Mosleh et a. (1994) for a
number of thoughtful papers on the definition and
treatment of model uncertaintiesin the context of PRA
applications. Thetopicisalso discussed and debatedin
atutoria articleby Hoeting et a. (1999). Bernardo and
Smith (1994) aso work out this approach in their
Chapter 6 on “remodelling.” Drougett (1999) includes
adiscussion on the role of information concerning the
models themselves (for example, their structure and
past performance) in the estimation process.

Further consideration of suchissuesisbeyond the scope
of this handbook. The parameter uncertainties given
here all assume that the model is a perfect description
of the real world.

6.2 Initiating Events

This section and Section 6.3 are fundamental. The
methodsintroduced here are used throughout the rest of
the handbook. The most important topics for a first-
time reader are:

e Maximum likelihood estimation (6.2.1.1),

* Bayesian estimation, especialy with a discrete
prior or aconjugate prior (6.2.1-6.2.2.5), and

* Model validation, especialy using graphical tools
(portions of 6.2.3).

Initiating events here use the broad definition of the
examplesin Section 2.2, events that occur randomly in
time and that initiate a quick response to restore the
system to normal.

Theevent frequency is denoted 8, with units events per
unit time. Thedataconsist of x observed eventsintime
t, where x is an integer $ 0 and t is some time > 0.
Note, t is considered nonrandom, and x is randomly
generated. This can be expressed using the notation
givenin Appendix A, with upper case letters denoting
random variables and lower case letters denoting
numbers. Before data had been generated, the random
number of initiating eventswoul d have been denoted by
X. For any particular number X, the probability of x
initiating eventsintimetis

Pr(X = x) = e’8(&)x! . (6.1)



This formula for the Poisson distribution is a
restatement of Equation 2.1, and will be used through-
out this section.

The methods of parameter estimation will beillustrated
by the following hypothetical data set.

Example 6.1 Initiating events with loss of
heat sink.

In the last six years (during which the reactor was
critical for 42800 hr.) a hypothetical PWR has had
one initiating event that involved a loss of heat
sink. The parameter to estimate is & the
frequency of such events while the reactor is
critical.

6.2.1 Frequentist or Classical Estimation

As explained in Section 6.1, Bayesian estimation
methods are more important in PRA, but the classica
estimator has a simpler form. Also, the comparison
among estimators flows somewhat better if the short
presentation of frequentist estimators precedes the
lengthier presentati on of Bayesian estimators. For these
reasons, frequentist methods are given first in this
section.

6.2.1.1 Point Estimate

The most commonly used frequentist estimate is the
maximum likelihood estimate (MLE). Itisfound by
taking the likelihood, given by Equation 6.1, and
treating it as a function of 8& The vaue of & that
maximizes the likelihood is called the MLE. It can be
shown (as a calculus exercise) that the maximum
likelihood estimate (MLE) of &is

A

A=xlt. (6.2)
This formula is simple and intuitively natural: the
observed number of events divided by the observed
time period. Thissimplicity ispart of the appeal of the
MLE. Thehat notationisused to indicatethat theMLE
is an estimate calculated from the data, not the true,
unknown 8.

Example 6.1 has x = 1 and t = 42800 hrs. The
likelihood is plotted on Figure 6.3 as a function of 8.

The likelihood function is maximized when &8 =
1/42800 = 2.3E-5. Therefore, the estimated event
rate for the plant is
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i =1/42800 = 2.3E15 events per critical-hour .

Converting the hours to 42800/8760 = 4.89 critical-

years yields

A

A =1/4.89 = 0.20 events per critical-year.

o
w

likelihood
o
[N

0.0

T T T T
4e-5 6e-5 8e-5 le-4

A (1/hrs)

Figure 6.3 Likelihood as a function of &, for data of
Example 6.1.

T
0e0 2e-5

In the above example, and in genera throughout this
handbook, the final answer is presented with few
significant digits. Thisreflectsthe uncertainty inherent
in all estimates. Indeed, sometimes not even the first
significant digit is known precisdly. During
intermediate calculations, however, more significant
digitswill be shown, and used. This prevents roundoff
errors from accumulating during the cal culations.

It is also possible to combine, or pool, data from
several independent processes, each having the same
rate 8 In particular, suppose that the ith Poisson
process is observed for time t;, yielding the observed
count x.. Thetotal number of event occurrencesis x =
G,%, where the sum is taken over al of the processes,
and theexposuretimeist = Gt;. Therate 8isestimated

by
A=xlt=2x1%t.

For example, if counts obtained for different years are
used to estimate therate, the estimate istheratio of the
total count to thetotal exposuretime during theseyears.

6.2.1.2 Standard Deviation of the Estimator

The event count is random. In other words, if an
identical plant could be observed during the sameyears,
a different number of events might occur due to
randomness. Similarly, the same plant might yield a
different count over a different six-year period.
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Because the event count israndom, the estimator isalso
random, and the estimate is simply the observed value
for thisplant during these years. Notethedistinctionin
the terms: an estimator is a random variable, and an
estimateisthe particular value of the estimator after the
data have been generated.

For a Poisson distributed random variable X, the mean
and variance are the same, E(X) = var(X) = &, asstated
in Appendix A.6.2. Consequently, the standard
deviation of X is (&)*, and the estimated standard

deviation of the estimator 2 / Xltis
G2 1t= (A11)Y2 = x¥2 1t

The estimated standard deviation of /i isalsocaledthe
standard error for 8.

Thus, the standard error for 8 in Example 6.1 is
1/4.89 = 0.20 events per reactor-year.

A standard error is sometimes used for quick approxi-
mations when the data set is large. In that case, the
MLE is approximately normal, and an approximate
95% confidence interval is given by MLE %
2x(standard error). This approximation holds for
maximum likelihood estimation of virtualy any
parameter, when the date set is large. For event
frequencies, however, the following exact confidence
interval can be found.

6.2.1.3 ConfidencelInterval for 8

Frequentist estimation is presented before Bayesian
estimation because the MLE is so simple, simpler in
form than the Bayes estimates. The same cannot be
said for confidence intervals; the confidence-interval
formulas are somewhat more complicated than the
formulas for Bayesian interval estimates, and the
interpretation of confidence intervals is more subtle.
Confidence intervals are used in two ways in this
handbook: they give a standard of comparison, when
Bayes credible intervals are found based on so-called
noninformative priors, and they can be used (but are not
required) in some plots for validating model
assumptions. Therefore, readers may wish to skim the
present section quickly on the first reading.

The confidence interval is given in many reference
books, such as Johnson, Kotz, and Kemp (1992, Sec.
7.3), Bain and Engelhardt (1992, Section 11.4), or
Martz and Waller (1991, Table 4.4). Itisbased on the
chi-squared (or in symbols, ~) distribution, which is

6-6

tabulated in Appendix C, and which can befound easily
by many software packages. Asused below, Z(d) is
the pth quantile, or (100p)th percentile, of the chi-
sguared distribution with d degrees of freedom. Do not
misread /,(d) asinvolving multiplication.

Fora (1! ") confidence interval, or equivalently a
100(1 ¥ ")% confidence interval, the lower limit is

2
Zalz(zx)
ﬂ'conf, al2 = 2t

If x =0, this formulais undefined, but then simply set
Eont, 12 = 0.

Similarly, the upper limitis

 Xran(2x+2)

ﬂ’conf, 1-al2 — 2t .

Notice that an upper confidence limit is defined in the
case X = 0. It is reasonable that observing no
occurrences of the event would provide some
information about how large & might be, but not about
how small it might be.

The aboveformulasareintermsof . Setting "= 0.1,
for example, gives the formulas for a 90% confidence
interval. These formulasinvolvesthe 5th percentile of
a chi-squared distribution with 2x degrees of freedom,
and the 95th percentile of a chi-squared distribution
with (2x+2) degrees of freedom.

Theresulting confidenceinterval is conservativein the
sensethat the actual confidencelevel isno smaller than
the nominal level of 100(1 ' "%, but it could be
larger. This conservatism is inherent in confidence
intervals based on discrete data.

In Example 6.1, Table C.2 shows that 90%
confidence limits are

Xo0s(2) 0103

= = = A 1
ﬂ’conf, 0.05 2% 4.89 9.78 0.010
2
P _ Xo9s(4) ) 9.488 _
conf, 0.95 2% 489 9.78

with units events per critical-year.



The interpretation of confidence intervalsis given in
Appendix B. Thisinterpretation deserves emphasis, so
we elaborate on the topic here. In the frequentist
approach, & is fixed and the data are random.
Therefore, the maximum likelihood estimator and the
confidencelimitsareall random. For most datasetsthe

MLE, A, will be close to the true value of & and the
confidence interval will contain &  Sometimes,
however, the MLE will be rather far from 8, and
sometimes (less than 10% of the time) the 90% confi-
dence interval will not contain & The procedure is
good in the sense that most of the time it gives good
answers, but the analyst never knowsif the current data
set isone of the unlucky ones.

To illustrate this, consider the following example with
many hypothetical data sets from the same process.

Confidence intervals from
computer-generated data.

Example 6.2

A computer was used to generate Poisson data,
assuming an event rate §= 1.2 events per year
and assuming that 6 years were observed. Thus,
the event count followed a Poisson distribution
with mean & = 7.2. This was repeated, and 40
event counts were generated in all. These may
be interpreted as counts from 40 identical plants,
each observed for 6 years, or from 40 possible
six-year periods at the same plant.

Figure 6.4 shows that the first randomly generated
event count was 10, the next was 5, the next was
again 10, and so on. Some of the event counts were
less than the long-term mean of 7.2, and some were
greater. The maximum likelihood estimates of §are
plotted as dots in Figure 6.4. The corresponding
90% confidence intervals for &are also plotted.

In Figure 6.4, the vertical dashed line shows the true
value of 8 1.2. Two of the 40 intervals (5%) are to
the right of the true 8 These resulted from observing
event counts of 14 and 16. One of the 40 intervals
(2.5%) is to the left of the true 8 This interval was
computed from an observed event count of two.

Ideally, the error rates should both be 5%. They are
not, for two reasons. First, 40 is not a very large
number, so the random data do not exactly follow the
long-run averages. Second, confidence intervals
with discrete data are inherently conservative: a 90%
confidence interval is defined so that the probability
of containing the true 8is at least 90%, and the error
probabilities at each end are each at most 5%.
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The data analyst will normally have data from just
one plant for the six-year period. The resulting confi-
dence interval will contain the true value of & unless
the data happen to deviate greatly from the mean.
Unfortunately, the analyst does not know when this
has happened, only that it does not happen often.

—@— MLE and 90% confidence interval

P = = = =
Porocofrowrmnonrno~NungwNouwooovwowo~NRonog N

0 1 2 3 4
A (events/year)
Figure 6.4 Confidence intervals from random data, all
generated from the same process.

GCoD 0351

6.2.2 Bayesian Estimation
6.2.2.1 Overview

Bayesian estimation of &involves several steps. The
prior belief about &isquantified by aprobability distri-
bution, theprior distribution. Thisdistributionwill be
restricted to the positive real line, because & must be
positive, and it will assign the most probability to the
values of 8that are deemed most plausible. The data
are then collected, and the likelihood function is
constructed. Thisisgivenby Equation 6.1 for initiating
events. It is the probability of the observed data,
written as a function of 8 Finaly,the posterior
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distribution is constructed, by combining the prior
distribution and the likelihood function through Bayes
theorem. (For background on Bayes theorem and
Bayesian estimation, see Appendix A.5 and B.5.1)
This theorem says that

fo(8) % likelihood(8) X £ (8) .

Here, the symbol % denotes “is proportional to.” The
posterior distribution shows the updated belief about
the values of &. It isamodification of the prior belief
that accounts for the observed data.

Figure 6.5, adapted from atutorial article by Siu and
Kelly (1998), shows how the posterior distribution
changes asthe data set changes. Thefigureisbased on
adiffuse prior, and on three hypothetical data sets, with
x =1eventint = 10,000 hours, x =10 eventsint =
100,000 hours, and x = 50 eventsin t = 500,000 hours,

respectively. Note, each of these data sets hasA = xit
= 1.E 14 events per hour. The figure shows the prior
distribution, and the three posterior distributions
corresponding to the three data sets.

40000
Maximum
Likelihood
Estimate
i

30000
Prior

,\;
/) x=50
[ 1\ t=500,000 hr

/
[

S (hr)

x=10
t=100,000 hr

\x=1

\ ¢=10,000 hr

20000
2.E-4

|

10000 \ [
;\/‘/ ;/ ;

/T !

/ / !

_ S
0
A (events per hour)

Figure6.5 Prior distribution and posterior distributions
corresponding to three hypothetical data sets.

3.E4
GC00 0462 3

For asmall dataset, the posterior distributionresembles
the prior to some extent. As the data set becomes
larger, several patterns are evident:

» the posterior distribution departs more and more
from the prior distribution, because the data
contribute the dominant information,

 the posterior distribution becomes more
concentrated, indicating better knowledge of the
parameter, less uncertainty, and

» the posterior distribution becomes approximately

centered around the MLE, A,
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Tobeconsistent with the notation for random variables,
upper case letters would be used for uncertain
parameters that have probability distributions. Such
notationisnot customary inthe Bayesian literature, and
will not be used here. The reader must judge from
context whether the letter & denotes a particular value,
or the uncertain parameter with an associated
distribution.

6.2.2.2 Choosing aPrior

The subsections below consider estimation of &using
various possible prior distributions. The simplest prior
distributionisdiscrete. The posterior can be calculated
easly, for example, by a spreadsheet. The next
simplest prior is caled conjugate; this prior combines
neatly withthelikelihood to give aposterior that can be
evaluated by simpleformulas. Finally, themost general
priorsare considered; the posterior distribution in such
acase can only be found by numerical integration or by
random sampling.

The prior distribution should accurately reflect prior
knowledge or belief about the unknown parameter.
However, quantifying belief is not easy. Raiffa and
Schlaifer (1961, Sections 3.3.3-3.3.5) point out that
most people can think more easily in terms of
percentiles of a distribution than in terms of moments.
They also give advice on looking at the situation from
many directions, to make sure that the prior belief is
internally consi stent and hasbeen accurately quantified.
Siuand Kelly (1998, Sec. 5.1.4) present sevenwarnings
in connection with developing a prior distribution,
which are summarized here:

» Beware of zero values. If the prior says that a
value of &isimpossible, no amount of data can
overcome this.

» Beware of cognitive biases, caused by the way
people tend to think.

* Beware of generating overly narrow prior distri-
butions.

»  Ensurethat the evidence used to generate the prior
distribution is relevant to the estimation problem.

»  Becareful when assessing parameters that are not
directly observable.

» Bewareof conservatism. Realismistheideal, not
conservatism.

*  Be careful when using discrete probability distri-
butions.

For a fuller discussion of these points, see Siu and
Kelly.



Some priors are chosen to be “ noninformative,” that is,
diffuse enough that they correspond to very little prior
information. The Jeffreys noninformative prior is
often used in thisway. If informationisavailable, itis
more redlistic to build that information into the prior,
but sometimes the information is difficult to find and
not worth the trouble. In such a case, the Jeffreys
noninformative prior can beused. Itisoneof thepriors
discussed below.

6.2.2.3 Estimation with a Discrete Prior

When the prior distribution is discrete, the calculations
can easily be performed in a spreadsheet. Newcomers
to Bayesian estimation are strongly encouraged to work
through some examples of the type given here, to
develop a sense of how the process works and how the
posterior distribution depends on the prior and on the
data

The parameter is assumed to take one of m possible
values, &, ..., 8,. Let the probability distribution
function (p.d.f.) be denoted by f, so f(&8) = Pr(&8). This
probability quantifiestheanalyst’ sprior belief that each
of the possible values is the one operating in nature.

Then, some evidenceisobserved, denoted conceptually
by E. Bayes theorem says that

f(4)L(E[4)
f(AIE) = &= (6.3)
2L LEI) f(4)
where
f(8 |E) = theprobability of & given evidence E

(posterior distribution),

f(8) = the probability of & prior to having
evidence E ( prior distribution), and
L(E|8) =thelikelihood function (probability of the

evidencegiven 8) .

Note that the denominator in Equation 6.3, the total
probability of the evidence E, is simply anormalizing
constant. Therefore, amoreabbreviatedformof Bayes
theoremis

f(AIE) < f(A)L(EIA).

This is the form of the theorem that was given in the
overview of Section 6.2.2.1.
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Whenthe evidenceisintheform of x failuresgenerated
by a Poisson process over an operationa time t, the
likelihood function is given by Equation 6.1:

e (AD"
I—(El/l.): e T .

The above equations are illustrated here with several
prior distributions. For data, they all use the first
sample in Example 6.2, 10 events in six years. They
all use simple, flat, prior distributions over a
moderately wide range, but with different degrees of
discreteness. One could argue that this prior is not
very informative, but the real reason we choose it is
to make the impact of the Bayesian updating process
easy to see.

Given the ease of calculation with current computers,
a finely discretized prior (say, at 0, 0.01, 0.02,...6.00)
would give the most accurate results, and we will
provide that calculation in a moment. First, however,
let us use a very coarse prior at 0, 0.5, 1.0, ...6.0.
With only 13 bins, the reader can perform hand
calculations quite easily. The results are given in
Table 6.2. The prior is discrete, and is shown in
Figure 6.6. The posterior distribution is also discrete,
and is shown in Figure 6.7.

Table 6.2 Example 6.2, first sample (10 events
in 6 years) with coarse prior.

Event Prior Posterior ~ Cumulative

Rate Probability Likelihood  p; x L Probability  Probability
8 P L Pr(8|E) E Pr(4lE)
0.0 0.077 0.00E+0 0.00E+0  0.00E+0 0.00E+0
0.5 0.077 8.10E-4  6.23E-5 2.43E-3 2.43E-3
1.0 0.077 4.13E-2 3.18E-3 1.24E-1 1.26E-1
15 0.077 1.19E-1  9.12E-3 3.56E-1 4.82E-1
2.0 0.077 1.05E-1 8.06E-3 3.14E-1 7.96E-1
25 0.077 4.86E-2  3.74E-3 1.46E-1 9.42E-1
3.0 0.077 1.50E-2 1.15E-3 4.49E-2 9.87E-1
35 0.077 3.49E-3  2.68E-4 1.05E-2 9.98E-1
4.0 0.077 6.60E-4  5.07E-5 1.98E-3 1.00E+0
4.5 0.077 1.07E-4  8.20E-6 3.20E-4 1.00E+0
5.0 0.077 1.52E-5 1.17E-6 4.57E-5 1.00E+0
5.5 0.077 1.97E-6 1.51E-7 5.90E-6 1.00E+0
6.0 0.077 2.34E-7 1.80E-8 7.01E-7 1.00E+0

There is some value in plotting both distributions in
the same graph, so they can be compared easily.
In such a plot, the vertical bars fall on top of each
other and are easily confused. Therefore, we draw
the graph by connecting the tops of the bars, in
Figure 6.8.
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Figure 6.6 Coarse discrete prior distribution for 8.
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Figure 6.7 Discrete posterior distribution of §based
on 10 events in 6 years.
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Figure 6.8 Discrete prior and posterior distributions
plotted together.

The natural tendency is to think of these curves as
densities, but this is not quite correct because they
are not normalized to integrate to 1.0. Except for that
detail, the curves can be thought of as continuous
approximations of the discrete distribution.
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Even with such a coarse prior, the evidence is strong
and forces the distribution to peak at about §= 1.5
per year. There is essentially no chance that &is
greater than four or less than 0.5.

If we repeat the calculation with a discrete prior twice
as fine (i.e., on the points 0, 0.25, 0.50, 0.75,...6.00),
the prior now has 25 bins and the results are much
more smooth, as shown in Figure 6.9. These results
are quite smooth, and of course follow the previous
results.

0.20

-=-- prior probability
—e&— posterior probability

0.15

probability
o
S
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0.00 —90—0—0—0-9
4 5 6

3
lambda (events per year)

Figure 6.9 Discrete prior and posterior distributions
for 10 events in 6 years, with finely discretized prior.

Finally, let us repeat the calculation for a discrete flat
prior on the points 0, 0.05, 0.10, 0.15,...6.00, i.e., a
121-point grid. This time, the results, shown in
Figure 6.10, are detailed enough to closely
approximate a smooth, continuous distribution.
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Figure 6.10 Discrete prior and posterior distributions
for 10 events in six years, with very finely discretized
prior.




The spreadsheet calculation is identical with Table
6.2, except for having 121 bins rather than 13. Some
values are summarized in Table 6.3. These
Bayesian results are also compared with the
frequentist estimates obtained from the first sample,
shown earlier in Figure 6.4. The Bayesian posterior
distribution has a mode where the probability
function is maximized, and a mean equal to E& f(8).

Table 6.3. Comparison of Bayesian and
frequentist estimates for the data in

Example 6.2.
Quantity Bayes, Frequentist,
flat prior Figure 6.4
Point estimate
(Bayes mode, 1.65 1.73
Bayes mean, 1.833
frequentist MLE)
Lower end of interval
(Bayes 5th percentile, 1.00 0.95
lower confidence limit)
Upper end of interval
(Bayes 95th percentile, 2.80 2.85
upper confidence limit)

These values are compared to the frequentist point
estimate, the MLE. The Bayesian 5th and 95th per-
centiles form a Bayes credible interval, which is
compared with the frequentist confidence limits
shown at the top of Figure 6.4. The Bayes 90%
interval, based on a flat, essentially noninformative
prior, is slightly more narrow than the frequentist
90% confidence interval.

Thisconcludesthe examplesfor thissection. However,
we suggest that the reader make up a data set for
examining the way the posterior distribution responds
to growing evidence. For example, try beginning with
zero failures in year one; then adding two failures in
year two; then zero failuresin year three; etc. Also try
a case that does not agree with the prior; for example
five failuresin year one; then seven morein year two;
thensix inyear three. Such examplesaregivenfor pin
Section 6.3.2.1, but they are most val uable to someone
who constructs them and works them out, instead of
merely reading about them.

6.2.2.4 Estimation with a Conjugate Prior
We now turn from discrete to continuous prior

distributions. We begin with avery convenient family
of distributions: the conjugate priors.
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6.2.2.4.1 Definitions

The conjugate family of prior distributionsfor Poisson
dataisthefamily of gammadistributions. Two param-
eterizations of gamma distributions are given in Ap-
pendix A.7.6. For Bayesian estimation, the following
parameterization is the more convenient one:

B jesein

0=t

(6.4)

Here, 8has units L/time and $ has units of time, so the
product 8% is unitless. For example, if 8 is the
frequency of events per critical-year, $ has units of
critical-years. The parameter  is a kind of scale
parameter. Thatis, $correspondstothescaleof 8. If
we convert 8from events per hour to events per year by
multiplying it by 8760, we correspondingly divide $by
8760, converting it from hours to years. The other
parameter, " is unitless, and is caled the shape
parameter. The gamma function, * ("), is a standard
mathematical function, defined in Appendix A.7.6. If
"isapositiveinteger, " (") equals (""11)!

Let & have a gamma uncertainty distribution. In the
present parameterization, the mean of the gamma
distribution, also written asthe expected value E(8), is
"1$, and the variance, var(8), is ‘7$2 Note that the
units are correct, units 1/time for the mean and 1/time?
for the variance.

6.2.2.4.2 Update Formulas

As stated earlier and in Appendix B.5.1, the posterior
distribution is related to the prior distribution by

s (A) < PH(X = X[ 2) foyior (1) (6.5)

This is the continuous analogue of Equation 6.3. The
probability of the datais also called the likelihood, in
which caseit is considered as afunction of the parame-
ter 8 for a given x. For Poisson data, it is given by
Equation 6.1. The symbol % denotes “is proportional
to.” Probability density functions generally have
normalizing constantsin front to makethemintegrateto
1.0. These constants can be complicated, but using
proportionality instead of equality allows us to neglect
the normalizing constants. Stripped of all the normal-
izing constants, the gamma p.d.f. is

f(A) = A7 e
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The gamma distribution and the Poisson likelihood
combine in a beautifully convenient way:

f post (A) <« e

o l(x+a)—le—/1(t+ﬂ)

X
n (A1) Y
x!

Inthefinal expression, everything that does not involve
& has been absorbed into the proportionality constant.
This result is “beautifully convenient,” because the
posterior distribution of &is again a gamma distribu-
tion. Thisis the meaning of conjugate: if the prior
distribution isa member of the family (in this case, the
gamma family), the posterior distribution is a member
of the same family. The update formulas are;

” ”

post =X+ prior

‘5;3051 =t+ $prior

This leads to an intuitive interpretation of the prior
parameters. agamma( ", Sy, distributionis equiv-

alent, at least intuitively, to having seen |, eventsin
&ior time units, prior to taking the current data.

Figure 6.5 was constructed in this way. The prior
distribution was gamma(0.2, 10,000). Therefore, the
posterior distributions were gamma(1.2, 20,000),
gamma(10.2, 110,000), and gamma(50.2, 510,000).

When using these update formulas, be sure that t and
&ior Nave the same units. If one is expressed in hours
and one in years, one of the two numbers must be
converted before the two are added.

The moments of the gamma distribution were men-
tioned previously. The posterior meanis "}/ 8,4 and
the posterior variance s “}q/(Hos)’-

The percentiles of the gamma distribution are given by
many software packages. If you use such software, be
careful to check that it is using the same parameteriza-
tion that is used here! Here are three ways to get the
correct answer. (1) If the software uses the other
parameterization, fool it by inverting your value of $.
Then check to make sure that the numbers appear
reasonable. (2) A safe method is to have the software
find the percentiles of the gamma( ", 1) distribution.
Then manually divide these percentiles by .. This
ensuresthat the scale parameter istreated correctly. (3)
As a fina aternative, the percentiles of the gamma
distribution can be found from a tabulation of the chi-
squared distribution, possibly interpolating the table.
To do this, denote the (100p)th percentile of the poste-
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rior distribution by &, For example, denote the 95th
percentile by &, 4. The (100p)th percentileisgiven by:

8p = pp(z ”poa)/(2$p0$)

where, as elsewhere, /-"Zp(d) is the pth quantile, or
(100p)th percentile, of a chi-squared distribution with
d degrees of freedom. Note the presence of 2 in the
numerator and denominator when the chi-squared
distribution is used.

The next section contains examples that use these
update formulas with several priors.

6.2.2.5 Possible Conjugate Priors

6.2.25.1 InformativePriors

The prior distribution must come from sources other
than the current data. 1t might be tempting to use the
data when constructing the prior distribution, but that
temptation must be resisted. Prior distributions are
named “prior” for areason: they reflect information
that does not come from the current data. Ideally,
generic data provide the basisfor prior belief. Generic
data sources are given in Section 4.2.

Consider again Example 6.1, involving initiating
events with loss of heat sink. With no special knowl-
edge about the plant, prior belief about the plant is
reasonably based on the overall industry perfor-
mance, so we use the generic industry distribution as
the prior. Poloski et al. (1999a) examined initiating-
event data from the nuclear power industry over nine
years. For PWRs, and initiating events involving loss
of heat sink, they determined that the variability of &
across the industry can be described by a gamma
distribution with shape parameter = 1.53, and scale
parameter = 10.63 reactor-critical-years. Regretta-
bly, Table G-1 of the report gives only a mean and a
90% interval, not the distribution and its parameters.
The distribution given here is taken from the unpub-
lished work that formed the basis of the report. The
distribution is a gamma distribution, so the update
formulas given above can be used in the hypothetical
example of this section. The prior distribution is
shown in Figure 6.11.

Now, consider updating this prior with the data from
Example 6.1. To make the units consistent, convert
the 42800 reactor-critical-hours in the example to
42800/8760 = 4.89 reactor-critical-years. The update
formula yields:

Tost = X+ iy =1+ 1.53 =253

Frost = U+ By = 4.89 + 10.63 = 15.52 reactor-critical-
years.
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Figure 6.11 Prior density for 8 gamma(1.53, 10.63).

The mean, “../80s is 0.163 events per reactor-
critical-year, the variance is 0.0105 (per reactor-
critical-year squared), and the standard deviation is
the square root of the variance, 0.102 per reactor-
critical-year.

A 90% credible interval is the interval from the 5th to
the 95th percentiles of the posterior distribution. A
software package finds the two percentiles of a
gamma(2.53, 1.0) distribution to be 0.5867 and
5.5817. Division by 4, yields the two percentiles of
the posterior distribution: 0.038 and 0.36. Alterna-
tively, one may interpolate Table C.2 of Appendix C
to find the percentiles of a chi-squared distribution
with 5.06 degrees of freedom, and divide these
percentiles by 28%,. Linear interpolation gives
answers that agree to three significant digits with the
exact answers, but if the degrees of freedom had not
been so close to an integer, the linear interpolation
might have introduced a small inaccuracy.

The interpretation of the above numbers is the
following. The best belief is that 8is around 0.16,
although it could easily be somewhat larger or
smaller. Values as small as 0.038 or as large as
0.36 are possible, but are approaching the limits of
credibility.

Two graphical ways of presenting this information
are given below. Figure 6.12 shows the posterior
density. The areas to the left of the 5th percentile
and to the right of the 95th percentile are shaded.
The 90% credible interval is the interval in the mid-
dle, with probability 90%. Figure 6.13 shows the
same information using the cumulative distribution.
The 5th and 95th percentiles are the values of &
where the cumulative distribution is 0.05 and 0.95,
respectively. These percentiles are the same values,
as shown in the plot of the density.
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Figure 6.12 Posterior density of 8 gamma(2.53,
15.52), for Example 6.1 with industry prior. The 5th
and 95th percentiles are shown.
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Figure 6.13 Posterior cumulative distribution of &
for Example 6.1 with industry prior. The 5th and
95th percentiles are shown.

For PRA applications, however, the right tail is
typically of concern for risk, corresponding to high
initiating event frequency (or, in other sections of this
chapter, high probability of failure on demand, high
unavailability, or long time to recovery). The interval
given above holds the error probability for the right
tail equal to 0.05. This number is customary in much
statistical practice, and has therefore been used in
many studies for the NRC. The lower end of the
interval, on the other hand, is not of great safety
concern. ltis easy to calculate, however. Therefore,
the above 90% interval, corresponding to 5% poste-
rior probability in each tail, is commonly presented in
PRA studies.

Actually, however, the interval presents only a
portion of the information in the posterior distribution,
two summary numbers. The full distribution is used
in a PRA.
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6.2.2.5.2 Noninformative Prior

The Jeffreys noninformative prior is intended to
convey little prior belief or information, thus allowing
the data to speak for themselves. Thisis useful when
no informed consensus exists about thetrue value of the
unknown parameter. It is also useful when the prior
distribution may be challenged by people with various
agendas. Some authors use the term reference prior
instead of “noninformative prior,” suggesting that the
prior is a standard default, a prior that allows consis-
tency and comparability from one study to another.

With Poisson data, the Jeffreys noninformativeprior is
obtained if the shape parameter of agammadistribution
istaken to be "= %2 and the parameter $is taken to be
zero. (See, for example, Box and Tiao 1973.) Ignoring
the normalizing constant at the front of Equation 6.4
yields a function that is proportional to &%, shown in
Figure 6.14. Although this function isinterpreted asa
density function, it is an improper distribution be-
cause itsintegral from 0 to 4 isinfinite.

0.2 03 04
A (1/time)
Figure 6.14 Jeffreys noninformative prior distribution

for an event frequency.

0 0.1 0.5

GC99 0292 12

It is not intuitive that this prior is “noninformative.”
Simple intuition might expect a uniform distribution
instead. To better educatetheintuition, supposewe had
some median prior value m; that is, the prior distribu-
tion of 8satisfies Pr(8< m) = Pr(8>m). Thiscanbe
rewritten as

Pr0O<8<m)=Pr(m< 8<4).

The interval from 0 to m is shorter than the interval
from mto 4. Therefore, the prior density should be
larger to the left of m than to the right. The density
shown in Figure 6.14 hasthis property. (Weignorethe
fact that the density in Figure 6.14 isimproper.)
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Further arguments for the prior are too complicated to
give here. For afuller explanation of noninformative
priors, see Appendix B.5.3.1 and the references cited
there.

Suppose that the data consist of x eventsintime t.
Formal application of the update formulas yields
ex = X+ Ve
Foa =t +0.

That is, the Bayes posterior distributionfor & is
gamma(x + %, t).

It is interesting to compare the interval using the
Jeffreys prior with the corresponding confidence
interval. The 90% posterior credible interval is

Eoos = P 00s(2X + 1)/2t
Eoos = pzoss(zx +1)/2t.

These may be compared with the 90% confidence
interval:

8oonf, 005 — P 0.0s(2¥)/2t
8oonf, 095 — pzo.95(2x + 2)/2t.

Theconfidenceintervalsdiffer fromthe Bayescredible
intervals only in the degrees of freedom, and there only
dlightly. Thisisthe primary senseinwhich the Jeffreys
prior is“noninformative.” Thelower and upper confi-
dence limits have degrees of freedom 2x and 2x + 2,
respectively. The two Bayesian limits each use the
average, 2x + 1. The confidenceinterval iswider than
the Jeffreys credibleinterval, areflection of the conser-
vatism of confidence limits with discrete data. How-
ever the similarity between the confidence limits and
the Jeffreys limits shows that the result using the
Jeffreys prior will resemble the result using frequentist
methods, that is, using no prior information at all.

Consider again Example 6.1, with one event in 4.89
critical-years, and use the Jeffreys noninformative
prior. The resulting posterior distribution has

“post = 1.5
Fost = 4.89 critical-years .

The mean of this distribution is 1.5/4.89 = 0.31
events per critical-year. A 90% Bayes credible
interval can be obtained from a chi-squared table
without any need for interpolation, because the
degrees of freedom parameter is 3, an integer. The
5th and 95th percentiles of the chi-squared distribu-
tion are 0.352 and 7.815. Division by 2x4.89 yields
the percentiles of the posterior distribution, 0.036 and
0.80.



This posterior distribution has a larger mean and
larger percentiles than the posterior distribution in
Section 6.2.2.5.1. The data set is the same, but the
different prior distribution results in a different poste-
rior distribution. The results will be compared in
Section 6.2.2.5.4.

6.2.2.5.3 Constrained Noninfor mative Prior

This prior is a compromise between an informative
prior and the Jeffreys noninformative prior. The mean
of the constrained noninformative prior uses prior
belief, but the dispersion is defined to correspond to
little information. These priors are described by
Atwood (1996), and by references given there. Con-
strained noninformative priors have not been widely
used, but they are mentioned here for the sake of
completeness.

For Poisson data, the constrained noninformative prior
is a gamma distribution, with the mean given by prior
belief and the shape parameter =%2. That is:

n — 1
prior — 2

$;3fi0T satlshes "prior/‘g;lrior = prior mean .

To illustrate the computations, consider again the
Example 6.1, with one event in 4.89 reactor-critical-
years. Suppose we knew that in the industry overall
such events occur with an average frequency of
0.144 events per reactor-critical-year. (This is
consistent with the informative prior given above in
Section 6.2.2.5.1.) Suppose further that we were
unable or unwilling to make any statement about the
dispersion around this mean — the full information
used to construct the informative prior was not
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available, or the plant under consideration was
atypical in some way, so that a more diffuse prior
was appropriate.

The constrained noninformative prior with mean
0.144 has "%, = % and &, = 3.47 critical-years.
The resulting posterior distribution has

o =X+ =15
$0 =t +3.47=8.36

The mean is 0.18 events per critical-year, and the
90% credible interval is (0.021, 0.47). This notation
means the interval from 0.021 to 0.47.

6.2.2.5.4 Example Comparisons Using Above
Priors

In general, the following statements can be made:

*  The Jeffreys noninformative prior results in a
posterior credible interval that is numericaly
similar to a confidence interval, but dlightly
shorter.

o If the prior mean exists, the posterior mean is
between the prior mean and the MLE.

» If two prior distributions have the same mean, the
more concentrated (less diffuse) prior distribution
will yield themore concentrated posterior distribu-
tion, and will pull the posterior mean closer to the
prior mean.

These statements are now illustrated by example.
The estimates found in the above sections for
Example 6.2 and the various priors are compared in
Table 6.4 and in Figure 6.15.

Table 6.4 Comparison of estimates with 1 event in 4.89 reactor-critical-years.

Method Prior mean Posterior Point estimate 90% interval (confidence

parameters (MLE or posteri- | interval or posterior credi-
or mean) ble interval)

Frequentist NA NA 0.20 (0.010, 0.97)

Bayes with Jeffreys undefined =15 0.31 (0.036, 0.80)

noninformative prior, $=4.89

gamma(0.5, 0)

Bayes with (informative) 0.144 =253 0.16 (0.038, 0.36)

industry prior, $=15.52

gamma(1.53, 10.63)

Bayes with constrained 0.144 =15 0.18 (0.021, 0.47)

noninformative prior, $=28.36

| gamma(0.5, 3.47)
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Figure 6.15 Comparison of four point estimates and
interval estimates for 8.

In Table 6.4 and in Figure 6.15, the Jeffreys prior and
the frequentist approach are listed next to each other
because they give numerically similar results. The
Jeffreys prior yields a posterior credible interval that
resembles the frequentist confidence interval. Itis a
little shorter, but it is neither to the right nor to the
left. This agrees with the earlier discussion of the
Jeffreys prior.

In each Bayesian case, the posterior mean falls
between the prior mean (if defined) and the MLE,
0.20. The prior distribution has more influence when
the prior distribution is more tightly concentrated
around the mean. The concentration is measured by
the shape parameter "}, because 1/ ""equals the
relative variance (= variance/mean?). Therefore the
larger *%, the smaller the relative variance. The
industry prior and the constrained noninformative
prior have the same mean, but the industry prior has
the larger "', that is, the smaller variance. As a
consequence, in both cases the posterior mean is
between the MLE, 0.204, and the prior mean, 0.144,
but the posterior mean based on the industry prior is
closer to 0.144, because that prior has a smaller
variance. Because the prior mean is smaller than the
MLE, the bottom two lines give smaller posterior
estimates than do the top two lines. Also, the prior
distribution with the most information (largest *’)
yields the most concentrated posterior distribution,
and the shortest 90% interval.

In some situations, no conjugate prior is satisfactory.
For example, agammadistributionisvery unredlistic if
the shape parameter is very small. Asarule of thumb,
the lower percentiles of the distribution are unredlistic
if “ismuchsmallerthan0.5. Such aposterior distribu-
tion ariseswith Poi sson datawhen the prior distribution
isvery skewed ( “"very small) and the data contain zero
events. Then, the posterior distribution also is very
skewed, and the posterior 5th percentile may be many
orders of magnitude below the posterior mean. The
subject-matter experts must look at the percentiles and
decideif they arebelievable. If not, amore appropriate
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prior should be chosen. It will not be conjugate. This
isthe subject of the next subsection.

6.2.2.6 Estimation with a Continuous
Nonconjugate Prior

Discrete priors and conjugate priors were updated
above with simple formulas. What remains are the
continuous nonconjugate priors. Any continuous
distribution defined on the allowed range of &can, in
principle, be used as a prior. The resulting posterior
distributionisacontinuousdistribution, with no simple
form. (Becausethe posterior distribution does not have
asimpleanalytical form, it cannot be entered directly as
an input to most PRA codes. Instead, a discrete ap-
proximation of the posterior distribution must usually
be used.)

Three approaches for obtaining the posterior are given
here. Some examples will be worked out in Section
6.2.2.7.

6.2.2.6.1 Direct Numerical Integration

If software is available for performing numerical
integration, the following approach can be used. Find
the form of the posterior distribution, using Equation
6.5. Suppose, for example, that the prior distribution
for islognormal, with - and ~ denoting the mean and
variance of the normal distribution of In&. Asstatedin
Appendix A.7.3, the lognormal density is proportional
to

_YInd-m)®
fLN(/i)OC;e 2( o )

Substitute this and Equation 6.1 into Equation 6.5, to
obtain the form of the posterior density:

_g(lnﬁ-ﬂ)z
Cf o (2) = e‘%xze 2 o

All termsthat do not involve &have been absorbed into
the normalizing constant, C. The normalizing constant
can be evaluated by numerically integrating Cf .4 from
0 to 4, that is, integrate the right hand side of the
equation. Unlessxisunrealistically large, the function
does not need to be integrated in practice out beyond,
say, In& = - + 5F C equals the integra of Cf,
because the integral of f,,; must equal 1. Once C has
been evaluated, the mean and percentiles of f,, can be
found numerically.



Numerical integration, using a technique such as the
trapezoidal rule or Simpson’srule, can be programmed
easily, even in a spreadsheet. The ideas are found in
some cal culustexts, and in books on numerical methods
such as Press et al. (1992).

6.2.2.6.2 Simple Random Sampling

A second approach, which does not directly involve
numerical integration, is to generate a large random
sample from the posterior distribution, and use the
sampleto approximate the propertiesof thedistribution.
Some people think of this as numerical integration via
randomsampling. Surprisingly, therandom samplecan
be generated without explicitly finding the form of the
posterior distribution, as explained by Smith and
Gelfand (1992).

The algorithm, called the rejection method for sam-
pling from a distribution, is given here in its general
form, and applied immediately to sampling from the
posterior distribution. In general, suppose that it is
possibleto sample some parameter 2from acontinuous
distribution g, but that sampling from a different
distribution f is desired. Suppose aso that a positive
constant M can be found such that f(2)/g(2) # M for al
2. Thedgorithmis:

(1)
2

3

Generate Z2from g(2);

Generate u fromauniformdistribution, 0 # u# 1;
and

If u# f(2)/[Mg(2)] accept 2inthe sample. Other-
wise discard it.

Repeat Steps (1) through (3) until enough values of 2
have been accepted to form a sample of the desired
size.

This algorithm is the basis for many random-number
generation routines in software packages. Itisapplied
below to the generation of a sample from the posterior
distribution for 8. The equations are worked out here,
and the algorithm for the posterior distribution is
restated at the end.

Let f be the posterior density and let g be the prior
density. Then Equation 6.5 states that the ratio
f(8)/9(8) is proportiona to the likelihood, which is
maximized, by definition, when 8equalsthe maximum
likelihood estimate, x/t. That is, theratio of interest is:

f(8)/g(8) = Ce* (&)
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for some constant C. Thisismaximized when 8equals
x/t. Therefore, define M = max[f(8)/g(8)] = Ce”x".
The condition in Step (3) above is equivalent to:

u# [Ce’8(&)] / [Ce™x] = [e"%(&)] | [e"X] .

Theconstant cancelsinthe numerator and denominator,
so we do not need to evaluate it! It would have been
possible to work with m = M/C, and the calculations
would have been simpler. This rewritten form of the
algorithm, for Poisson data, is given here.

If x>0, definem=e"x*. If x=0, definem= 1.
The steps of the algorithm are:

(1)
2

3

Generate arandom & from the prior distribution;
Generate u fromauniformdistribution, O # u# 1;
and

If u# e’?(&)Ym, accept &in the sample. Other-
wise discard 8.

Repeat Steps (1) through (3) until a sample of the
desired sizeisfound.

Intuitively, this algorithm generates possible values of
&fromthe prior distribution, and discards most of those
that are not very consistent with the data. Theresult is
a sample from the posterior distribution.

6.2.2.6.3 More Complicated Random Sampling

All-purpose Bayesian update programs can be used for
the present simple problem. For example, the program
BUGS' (Bayesian inference Using Gibbs Sampling)
performs Markov chain Monte Carlo (MCMC)
sampling. This package is intended for complicated
settings, such as those described in Chapters 7 and 8.
Using it here islike using the proverbial cannon to kill
amosquito. Nevertheless, theprogramisfree, and very
flexible, and can be used here. It is available for
download at

http://www.mrc-bsu.cam.ac.uk/bugs/

and is described more fully in Sections 7.2.3 and
8.3.3.3 of this handbook. An exampleis given below.

! Mention of specific productsand/or manufacturersin
this document implies neither endorsement or
preference, nor disapproval by the U.S. Government or
any of its agencies of the use of a specific product for
any purpose.
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6.2.2.7 ExamplesInvolving Nonconjugate Priors

These techniques will be illustrated with Example 6.3,
from Appendix J-4 of Poloski et al. (1999a).

Example 6.3 Small-break LOCAs.

No small-break loss-of-coolant accidents
(SBLOCASs) have occurred in 2102 reactor-
calendar-years at U.S. nuclear power plants. The
WASH-1400 (NRC 1975) distribution for the
frequency of this event was lognormal with
median 1E!3 and error factor 10.

6.2.2.7.1 Examplewith Lognormal Prior

Poloski et al. (1999a) use the WASH-1400 distribu-
tion as a prior, and update it with the 2102 years of
data.

The resulting posterior distribution was sampled
100,000 times using the method described in Section
6.2.2.6.2 above, and the mean was found. Then, the
values were arranged in increasing order, and the
percentiles of the sample were found. This process
took less than 15 seconds in 1999 on a 166 MHz
computer. Based on the mean and percentiles of the
sample, the mean of the posterior distribution is
3.5E14, and the 90% posterior credible interval is
(4.5E15, 9.8E14).

To illustrate the method of Section 6.2.2.6.3, the
distribution was also sampled using BUGS. Figure
6.16 shows the script used for running BUGS.

model
{
mu <- lambda*rxyrs
X ~ dpois(mu)
lambda ~ dlnorm(-6.908, 0.5104)

}
list(rxyrs=2102, x=0)

Figure 6.16 Script for analyzing Example 6.3 using
BUGS.

The section in curly brackets defines the model.
Note that <-, intended to look like a left-pointing
arrow, is used to define quantities in terms of other
guantities, and ~ is used to generate a random
guantity from a distribution. The names of distribu-
tions begin with the letter d. Thus, X is a Poisson
random variable with mean :, with = = & x rxyrs.
The prior distribution of &is lognormal. The parame-

6-18

ters given in the script arise as follows. BUGS
parameterizes the normal in terms of the mean and
inverse of the variance, for reasons explained in
Section 6.6.1.2.1. It parameterizes the lognormal
distribution using the parameters of the underlying
normal. It is shown below that a lognormal with
median 1E!3 and error factor 10 corresponds to an
underlying normal with mean 16.980 and standard
deviation 1.3997. Therefore, the inverse of the
variance is 1/1.3997% = 0.5104.

The line beginning “list” defines the data, 0 events is
2102 reactor years. BUGS also requires an initial
value for 8 but generated it randomly.

When BUGS generated 100,000 samples, the mean,
5th percentile, and 95th percentile of Swere 3.5E14,
4.5E15, and 9.8E14, just as found above.

6.2.2.7.2 Examplewith “Moment-M atching”
Conjugate Prior

Conjugate priors have appeal: Some people find
algebraic formulas tidier and more convenient than
brute-force computer calculations. Also, when a
PRA program requests a distribution for a parameter,
it is usually easier to enter a distributional form and
a couple of parameters than to enter a simulated
distribution.

Therefore, a nonconjugate prior is sometimes re-
placed by a conjugate prior having the same mean
and variance. This method is carried out here with
the above example.

Begin by finding the gamma prior with the same
moments as the above lognormal prior. As explained
in Appendix A.7.3, the median, error factor, and
moments of the lognormal distribution are related to
> and F of the underlying normal distribution of In7
as follows:

median(8) = exp(:)

EF(8) = exp(1.645A)

mean(8) = exp(- + F/2)

var(8) = [median(8]lexp(A)i[exp(F) ! 1] .

The lognormal prior has median 1.0E!3, and error
factor 10. Solving the first two equations yields

- =16.907755
F=1.399748 .

Substituting these values into the second two equa-
tions yields

mean(8) = 2.6635E!13
var(§) = 4.3235E15 .



Now the gamma distribution must be found with this
mean and this variance. The formulas for the mo-
ments of a gamma distribution were given in Section
6.2.2.4.1 and in Appendix A.7.6:

mean = ‘1%
variance = "% .

Therefore,

*= mean?/variance = 0.164
$ = mean/variance = 61.6 reactor-years.

Warning flags should go up, because **is consider-
ably smaller than 0.5. Nevertheless, we carry out the
example using this gamma distribution as the prior.
The update formulas yield:

"ot = 0+0.164 = 0.164
Fost = 2102 + 61.6 = 2164 reactor-years .

The posterior mean is 7.6E!5, and a 90% credible
interval is (3.4E112, 4.1E14), all with units events
per reactor-year.

6.2.2.7.3 Comparison of Example Analyses

The two posterior distributions do not agree closely,
as will be discussed below. If the shape parameter
*of the gamma prior had been larger, the two prior
distributions would have had more similar percen-
tiles, and the two posterior distributions likewise
would have agreed better. Asitis, however, the two
analyses are summarized in Table 6.5.

Table 6.5 Posterior distributions from two
analyses.
Prior Mean 90% Interval
Lognormal | 3.5E14 | (4.5E!5, 9.8E14)
Gamma 7.6E15 | (3.4E!112, 4.1E14)

The most notable difference between the two poste-
rior distributions is in the lower endpoints, the 5th
percentiles, which differ by many orders of magni-
tude. This is explained, to some extent, by graphical
comparisons. Figures 6.17 and 6.18 show the prior
cumulative distributions. When plotted on an ordi-
nary scale in Figure 6.17, the two prior distributions
look fairly similar, although the gamma distribution
seems to put more probability near zero. The differ-
ences become much more obvious when the two
prior distributions are plotted on a logarithmic scale
in Figure 6.18. These differences between the two
prior distributions are present in spite of the fact that
the two priors have equal means and equal vari-
ances.
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Figure 6.17 Two prior distributions having the same
means and variances.
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Figure 6.18 The same prior distributions as in the
previous figure, with &plotted on a logarithmic scale.

The two resulting posterior distributions are also
quite different in the lower tail, as shown in Figure
6.19, and this difference is especially clear when the
distributions are plotted on a log scale, as shown in
Figure 6.20.
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Figure 6.19 Two posterior distributions, from priors

in previous figures.
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Figure 6.20 The same posterior distributions as in
the previous figure, with 8 plotted on logarithmic
scale.
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Incidentally, these illustrations use cumulative distri-
butions instead of densities, for an important reason.
Cumulative distributions simply show probabilities,
and so can be plotted with the horizontal scale either
linear or logarithmic. Alternatively, the density of
In(8) could be plotted against In(8), but take care to
calculate the density of In(8) correctly, as explained
in Appendix A.4.7.

6.2.2.8 Analysiswith Fixed Count and Random
Time

Sometimes it is useful to consider a fixed number of
eventsin arandomtime, awaiting time. For example,
if the event frequency is believed to change over time,
only the most recent history may represent current
behavior. In such a situation, one might decide to use
only the most recent few events, such asx = 3, and to
treat the corresponding timet asrandom. Heretisthe
time measured backwards from the present to the xth
event in the past. Earlier events could be used to
construct a prior distribution, but the dispersion of the
prior distribution should be set large because the earlier
events are not considered fully relevant to the present.

The above data consist of x exponential (&) durations.
The analysis techniques are given in Section 6.6.1.2.2.
It turns out that Bayesian analysis with an informative
prior is exactly the same whether the data are regarded
as coming from a Poisson count x in fixed time t or a
sum t of x exponential durations. The two likelihoods
are proportional to each other, and the posterior distri-
butions are identical.

6.2.3 Modd Validation

Model validation should go hand in hand with parame-
ter estimation. Philosophically, it would seem natural
first to confirm the form of the model, and second to
estimate the parameters of that model. However,
typically one can perform goodness-of-fit tests, and
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other validations of a model, only after the model has
been fully specified, that is, only after the form of the
model has been assumed and the corresponding param-
eters have been estimated. Because parameter-estima-
tion is built into most model-validation procedures, it
was presented first.

It is usually wise not to stop the analysis with just
estimating the parameters. Foolish results have been
presented by analystswho estimated the parameters but
did not thoroughly check that the assumptions of the
model were correct. This section presents ways to
check the model assumptions.

That being said, there is more in this section than will
be needed on any one analysis. Often, asimple plot is
sufficient to show that the model appears adequate.
When the data are very sparse, perhapsnot even that is
needed, because the data set is too small to invalidate
any model; in such a case, the simplest model is nor-
mally accepted. The methods here are offered for
possible use, and the analyst should select the appro-
priate ones.

The Poisson process was introduced in Section 2.2.2.
Thethreeassumptionswerelisted there: constant event
occurrence rate, no simultaneous events, and indepen-
dent time periods. These assumptions are considered
here. Much of the following material is taken from an
INEEL report by Engelhardt (1994).

The assumption of constant rate is considered in the
next two sections, first, wherethealternative possibility
isthat different data sources may have different values
of &, but in no particular order, and then, where the
alternative possibility isthat atime trend exists. Both
graphical methodsand formal statistical hypothesistests
are given for addressing the issues. The assumption of
no exactly simultaneous events is then discussed from
the viewpoint of examining the datafor common-cause
events. Finaly, the assumption of independent time
intervalsis considered, and some statistical tests of the
assumption are given.

When Bayesian methods are used, one must aso
examine whether the data and the prior distribution are
consistent. It makes little sense to update a prior with
data, if the data make it clear that the prior belief was
incorrect. That topic constitutesthefinal subsection of
the present section.

6.2.3.1 Poolability of Data Subsets
Assumption 1 in Section 2.2.2 impliesthat thereisone

rate 8for theentire process. The correctnessof such an
assumption can beinvestigated by analyzing subsets of



the data and comparing the estimates of & for the
various subsets.

Example 2.2 described LOSP events during shutdown.
For this section, consider a portion of that example.
The entire data set could be used, but to keep the
example from being too cumbersome we arbitrarily
restrict it to five plants at three sites, all located in one
State.

An obvious question concerns the possibility of differ-
ent rates for different plants. A general term used in
this handbook will be data subsets. In Example 6.4,
five subsets are shown, corresponding to plants. In
other examples, the subsets could correspond to years,
or systems, or any other way of splitting the data. For
initiating events, each subset correspondsto onecell in
the table, with an event count and an exposure time.

Shutdown LOSP events at five
plants, 1980-96.

Example 6.4

During 1980-1996, five plants experienced eight
LOSP events while in shutdown. These were
events from plant-centered causes rather than
external causes. The data are given here.

Plant Events Plant shutdown
code years
CR3 5 5.224
SL1 0 3.871
SL2 0 2.064
TP3 2 5.763
TP4 1 5.586
Totals 8 22.508

Sometimes, data subsets can be split or combined in
reasonableways. For example, if the subsetsweretime
periods, the data could be partitioned into decades,
years, or months. Thefiner thedivision of thecells, the
more sparse the data become within the cells. Too fine
apartition alows random variation to dominate within
each cell, but too coarse a partition may hide variation
that is present within individual cells. In the present
simple example, the most reasonable partition is into
plants. Anaysis of more complicated data sets may
require examination of many partitionings.
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First, agraphical techniqueis given to help the analyst
understand what the data set shows. Then, a formal
statistical procedure is presented to help quantify the
strength of the evidence for patterns seenin the graphi-
cal investigation.

6.2.3.1.1 Graphical Technique

Toexploretherelationsbetween cells, identify thecells
on oneaxis. Then, for each cell, plot a point estimate
of &and an interval estimate of &against the other axis.
Patternssuch astrends, outliers, or large scatter arethen
made visible.

In Example 6.4, the cells are plants. The data set
from each plant was analyzed separately, using the
tools of Section 6.2.1. The graph in Figure 6.21
shows the maximum likelihood estimate and a
confidence interval for each plant, plotted side by
side. For this handbook, the plot was produced with
a graphics software package, although a hand-drawn
sketch would be adequate to show the results.

Pooled (8/22.5)

CR3 (5/5.2)
TP3 (2/5.8)
TP4 (1/5.6)
SL2 (0/2.1)
SL1 (0/3.9)

S

Iy ) By B
0.5 1.0 15
A (events/reactor-shutdown-yr.)

Figure 6.21 MLEs and 90% confidence intervals for
8, based on each plant’s data and based on pooled
data from all the plants.

Ll
2.0 2.5
GC99 0202 €

0.0

The confidence interval for the pooled data is also
shown. Take care, however: this interval is only
valid if all the plants have the same 8, which is what
must be decided. Nevertheless, the interval and
point estimate for the pooled data give a useful
reference for comparisons with the individual plants.
For this reason, a vertical dotted line is drawn
through the mean of the pooled data.

Note that the plants are not displayed in alphabetical
order, which is a meaningless order for the event

rate, but in order of decreasing A . (When two plants
have the same MLE, as do SL1 and SL2, the upper
confidence limit is used to determine the order.)
Experience has shown that such a descending order
assists the eye in making comparisons.

CR3 appears somewhat high compared to the
others. Although there is considerable overlap of the
intervals, the lower confidence limit for CR3 is just
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barely higher than the MLE for the utility as a whole.
Of course, the picture might give a different impres-
sion if slightly different intervals were used: 95%
confidence intervals instead of 90% confidence
intervals, or Bayes intervals with the Jeffreys
noninformative prior instead of confidence intervals.
From the graph alone, itis difficult to say whether the
data can be pooled.

A graph like this should not be used to draw conclu-
sions without also using a formal statistical test. For
example, if many confidence intervals are plotted,
based on data sets generated by the same 8, afew will
be far from the others because of randomness alone.
Thiswasseenin Figure 6.4, where al the variation was
due to randomness of the data, and some intervals did
not overlap some others at all. Thus, an outlying
interval does not prove that the & are unequal. This
same statement istrue if other intervals are used, such
asBayescredibleinterval sbased on the noninformative
prior. Theissue isthe random variability of data, not
the kind of interval constructed.

Conversely, if there are only afew intervals, intervals
that just barely overlap can give strong evidence for a
differencein the &s.

To quantify the strength of the evidence against poola
bility, aformal statistical procedureisgiven inthe next
subsection. The graph gives an indication of what the
test might show, and helps in the interpretation of the
test results. |If the statistical test turns out to find a
statistically significant difference between plants, it is
natural then to ask what kind of difference is present.
Figure 6.21 shows that most of the plants appear
similar, with only one possible outlier. An unusually
long interval, such asthat seen in Figure 6.21 for SL2,
is generally associated with a smaller exposure time.
The picture provides insight even though it does not
give a quantitative statistical test.

6.2.3.1.2 Statistical Test

The Chi-Squared Test. To study whether the rateis
the same for different cells, use a chi-squared test.
Many statistics texts, such as Bain and Engelhardt
(1992, Chapter 13), discussthistest, and many software
packages perform the chi-squared test. It is presented
here in enough detail so that the reader could perform
the calculations by hand if necessary, because it is
instructive to see how the test works.

Let the null hypothesis be:

H,: 8isthe samein all the data subsets.
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In the present application, the data subsets are the five
plants. The method isto see what kind of data would
be expected when &redly is constant, and then to see
how much the observed counts differ fromthe expected
counts. If thedifferenceissmall, the countsareconsis-
tent with the hypothesis H, that the rate is constant. If,
instead, the difference is large, the counts show strong
evidence against H,.

Write x and t; for the count and exposure time corre-
sponding to the jth cell, and let x = Gx, and t = Gt;. If
H, is true, that is, if 8 is redly the same for al the

plants, then the estimate (MLE) of 8is A =x/t. The
estimate of the expected count is built from this quan-
tity. Assuming the hypothesis of a single rate 8, an
estimate of the expected count for thejth cell issimply:

In Example 6.4, the estimate of &is 8/22.508 = 0.355
events per shutdown-year. Therefore, the expected
count for CR3 is the estimate of &times the exposure
time for CR3, 0.335 x 5.224 = 1.857 events. Table
6.6 is an extension of the original table given in
Example 6.4, showing the quantities needed for the
calculation.

Table 6.6 Quantities for calculation of
chi-squared test.
Cell code X; t; e
CR3 5 5.224 1.857
SL1 0 3.871 1.376
SL2 0 2.064 0.734
TP3 2 5.763 2.048
TP4 1 5.586 1.985
Totals 8 22.508 8.000

The total of the expected counts agrees with the total
of the observed counts, except possibly for small
round-off error.

The test for equality of ratesthat is considered hereis
based on the following calculated quantity,

X2=Ex ! e)le,



sometimes called the Pearson chi-squared statistic,
after its inventor, Karl Pearson, or simply the chi-
squared statistic. The notation became standard long
before the custom devel oped of using upper-caseletters
for random variables and lower-case letters for num-
bers. In the discussion below, the context must reveal
whether X? refers to the random variable or the ob-
served value.

Observe that X? is large if the s (observed counts)
differ greatly from the gs (expected values when H, is
true). Conversely, X?issmall if the observed valuesare
close to the expected values. This statement is made
more precise asfollows. When H, is true and the total
count is large, the distribution of X? has a distribution
that is approximately chi-squared with ¢ I 1 degrees of
freedom, where c is the number of cells. If the calcu-
lated value of X? is large compared to the chi-squared
distribution, thereisstrong evidencethat H,isfal se; the
larger the X? valug, the stronger the evidence.

For the data of Table 6.4, X* = 7.92, which is the
90.6th percentile of the chi-squared distribution with
four degrees of freedom. The next subsection
discusses the interpretation of this.

Interpretation of Test Results. Suppose, for any
example with 5 cells, that X* were 9.8. A table of the
chi-squared distribution shows that 9.488 is the 95th
percentile of the chi-squared distribution with 4 degrees
of freedom, and 11.14 is the 97.5th percentile. After
comparing X? to these values, we would conclude that
the evidence is strong against H,, but not overwhelm-
ing. Thefull statement is:

o IfHyistrue, that s, if al the cells havethe same 8,
the chance of seeing such a large X? is less than
0.05 but more than 0.025.

Common abbreviated ways of saying this are:

*  Weregject H, at the 5% significance level, but not
at the 2.5% significance level.

» Thedifferencebetweencellsisstatistically signif-
icant at the 0.05 level, but not at the 0.025 level.

*  Thep-valueisbetween 0.05 and 0.025.

There will be some false alarms. Even if &is exactly
the same for all the cells, sometimes X* will be large,
just from randomness. It will be greater than the 95th
percentile for 5% of the data sets, and it will be greater
than the 99th percentile for 1% of the data sets. If we
observed such ava uefor X%, wewould probably decide
that the data could not be pooled. In that case, we
would have believed afalse alarm and made the incor-
rect decision. Just as with confidence intervals, we
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cannot be sure that this data set is not one of the rare
unlucky ones. But following the averages leads us to
the correct decision most of the time.

If, instead, X? were 4.1, it would be near the 60th
percentile of the chi-squared distribution, and therefore
be in the range of values that would be expected under
H,- We would say the observed counts are consistent
with the hypothesis H,, or H, cannot be rejected, or the
evidence against H, isweak. We would not conclude
that H, istrue, becauseit probably isnot exactly trueto
the tenth decimal place, but the conclusion would be
that H, cannot be rejected by the data.

In fact, for the data of Table 6.6, X* equals 7.92,
which is the 90.6th percentile of the chi-squared
distribution with 4 degrees of freedom. That means:
if all five plants have the same event rate, there is a
9.4% probability of seeing such a large value of X2.
The evidence against H, is not convincingly strong.
CR3 might be suspected of having a higher event
rate, but the evidence is not strong enough to prove
this.

The traditional cut-off is 5%. The difference between
cellsiscalled statistically significant, with no qualify-
ing phrase, if it is significant at the 0.05 level. Thisis
tradition only, but it is very widely followed.

In actual data analysis, do not stop with the decision
that a difference is, or is not, statistically significant.
Do not even stop after reporting the p-value. That may
be acceptable if the p-value is very small (much less
than 0.05) or very large (much larger than 0.05). In
many cases, however, statistical significanceisfar from
the whole story. Engineering significance is just as
important.

To illustrate this, consider a possible follow-up to the
above statistical analysis of Example 6.4. As men-
tioned, the statistical evidence against poolability isnot
strong, but some might consider it borderline. There-
fore, athorough analysis would ask questions such as:

. Arethere engineering reasons for expecting CR3
to have adifferent event rate than the other plants
do, either because of the hardware or because of
procedures during shutdown? (Be warned that it
is easy to find justifications in hindsight, after
seeing the data. It might be wise to hide the data
and ask these questions of adifferent knowledge-
able person.)

. What are the consequences for the PRA analysis
if the dataare pooled or if, instead, CR3 istreated
separately from the other plants? Does the deci-
sionto pool or not make any practical difference?
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Required Sample Size. The above considerationsare
valid if the total count is“large,” or more precisely, if
thegsare “large.” If the gsare small, the chi-squared
distributionisnot agood approximation to the distribu-
tion of X2. Thus, the user must ask how large acount is
necessary for the chi-squared approximation to be
adeguate. An overly conservative rule is that each
expected cell-count, g, should be 5.0 or larger. Despite
its conservatism, thisruleis still widely used, and cited
in the statistical literature and by some software pack-

ages.

A readable discussion of chi-squared tests by Moore
(1986, p.71) is applicable here. Citing the work of
Roscoe and Byars (1971), the following recommenda-
tions are made:

(1) With equiprobable cells, the average expected
frequency should be at least 1 when testing at the
0.05 level. In other words, use the chi-squared
approximation at the 5% level when x/c $ 1,
where x is the number of events and c is the
number of cells. At the 1% level, the chi-squared
approximation is recommended if x/c $ 2.

When the cells are not approximately equiproba-
ble, the average expected frequencies in (1)
should be doubled. Thus, therecommendationis
that at the 5% level x/c $ 2, and at the 1% level
xlc$ 4.

)

Note that in rules (1) and (2) above, the recommen-
dationisbased on the average rather than the minimum
expected cell-count. As noted by Koehler and Larntz
(1980), any rule such as (2) may be defeated by a
sufficiently skewed assignment of cell probabilities.

Roscoe and Byars al so recommend when ¢ = 2 that the
chi-sguared test should be replaced by the test based on
the exact binomial distribution of X; conditional onthe
total event count. For example, if the two cells had the
same exposure times, we would expect that half of the
events would be generated in each cell. More gener-
aly, if

. the two cells have exposure times t, and t,,
. atotal of x events are observed, and
. 8isthe same for both cells,

then, conditional on x, X; hasahbinomial(n, p) distribu-
tion, with p = t,/(t; + t,). Exact binomia tests are
discussed by Bain and Engelhardt (1992, p.405).

Example 6.4 has x = 8 and ¢ = 5. The cells are not
equiprobable, that is, g is not the same for al cells,
because the plants did not al have the same exposure
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time. Nevertheless, the expected cell countsdiffer from
each other by, at mogt, a factor of two. Thisisnot a
large departure from equiprobability, as differences of
an order of magnitude would be. Because x/c = 1.6,
and the calculated significance level is about 10%, the
samplesizeislargeenough for the chi-sguared approxi-
mationto beadequate. The conclusionsreached earlier
gtill stand. If, on the other hand, the sample size had
been considerably smaller, one would have to say that
the p-value is approximately given by the chi-squared
distribution, but that the exact p-value has not been
found.

If the expected cell-counts are so small that the chi-
squared approximationisnot recommended, theanal yst
can pool datain some*adjacent cells,” thereby increas-
ing the expected cell-counts.

Inthe Example 6.4, supposethat therewere engineering
reasonsfor thinking that theevent rateissimilar at units
at asingle site. Then, the sister units might be pooled,
transforming the original table of Example 6.4 into
Table 6.7 here.

Table 6.7 Shutdown LOSP events at three
sites, 1980-96.
Site code Events | Plant shutdown years
CR 5 5.224
SL 0 5.935
TP 3 11.349

We repedt, this pooling of cellsis not required with the
actual data, but it could be useful if (a) the cell counts
were smaller and (b) there were engineering reasonsfor
believing that the pooled cells are relatively homoge-
neous, that is, the event rates are similar for both units
at a site, more similar than the event rates at different
sSites.

Generally speaking, achi-sgquared test based on alarger
number of cells will have better power for detecting
when rates are not equal, but this also makes it more
difficult to satisfy guidelines on expected cell-counts
for the chi-squared approximation. Thus, it is some-
times necessary to make a compromise between ex-
pected cell counts and the number of cells.

Options involving the exact distribution of X? are also
possible. Themost widely known commercial software
for calculating the exact p-value is StatXact (1999).



6.2.3.2 NoTimeTrend

The chi-squared method given above does not use any
ordering of the cells. Even if the test were for differ-
ences in years, say, the test would not use the natural
ordering by calendar year or by plant age. When there
is a meaningful order to the data subsets, it may be
useful to perform additional analyses. The analysis
givenaboveisvalid, but an additional possibleanalysis,
making use of time order, is considered now.

The methods will beillustrated with Example 6.5.
6.2.3.2.1 Graphical Techniques

Confidence-Interval Plot. First, thesamekind of plot
that was used in the previous subsection can be used
here. Thetime axisisdivided into cells, orbinsinthe
terminology of some authors. For example, if the time
span is divided into calendar years, the counts and
reactor-critical-years for Example 6.5 are given in
Table 6.8.

Example 6.5 Unplanned HPCI demands.
Grant et al. (1995, Table B-5) list 63 unplanned
demands for the HPCI system to start at 23 BWRs
during 1987-1993. The demand dates are given
in columns below, in format MM/DD/YY.

01/05/87 08/03/87 03/05/89 08/16/90 08/25/91
01/07/87 08/16/87 03/25/89 08/19/90 09/11/91
01/26/87 08/29/87 08/26/89 09/02/90  12/17/91
02/18/87 01/10/88 09/03/89  09/27/90  02/02/92
02/24/87 04/30/88  11/05/89  10/12/90  06/25/92
03/11/87 05/27/88 11/25/89  10/17/90  08/27/92
04/03/87 08/05/88  12/20/89  11/26/90  09/30/92
04/16/87 08/25/88 01/12/90 01/18/91  10/15/92
04/22/87 08/26/88 01/28/90 01/25/91  11/18/92
07/23/87 09/04/88  03/19/90 02/27/91  04/20/93
07/26/87 11/01/88 03/19/90 04/23/91 07/30/93
07/30/87 11/16/88 06/20/90 07/18/91
08/03/87 12/17/88 07/27/90 07/31/91
Table 6.8 HPCI demands and reactor-critical-
years.
Calendar HPCI Reactor-critical-
year demands years
1987 16 14.63
1988 10 14.15
1989 7 15.75
1990 13 17.77
1991 17.11
1992 17.19
1993 17.34
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This table has the same form as in Example 6.4,
showing cells with events and exposure times. The
relevant exposure time is reactor-critical-years,
because the HPCI system uses a turbine-driven
pump, which can only be demanded when the
reactor is producing steam. The counts come from
the tabulated events of Example 6.5, and the critical-
years can be constructed from information in Poloski
et al. (1999a). The variation in critical-years results
from the facts that several reactors were shut down
for extended periods, and one reactor did not receive
its low power license until 1989.

This leads to a plot similar to Figure 6.21, showing
the estimated value of the demand frequency, & and
a confidence interval for each year. This is shown in
Figure 6.22.
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Figure 6.22 MLEs and 90% confidence intervals
for 8 each based on data from one calendar year.

Figure 6.22 seemsto indicate a decreasing trend in the
frequency of HPCI demands. However, the picture
does not reveal whether the apparent trend is perhaps
merely the result of random scatter. To answer that
guestion, a formal statistical testisnecessary, quantify-
ing the strength of the evidence. Such tests will be
givenin Section 6.2.3.2.2.

Cumulative Plot. Figure 6.22 required a choice of
how to divide thetime axisinto cells. A different plot,
given next, does not require any such choice, if the
dates of the events are recorded. Plot the cumulative
event count at the n event dates.

Figure 6.23 shows this for Example 6.5. The events
are arranged in chronological order, and the cumula-
tive count of events is plotted against the event
times.

The slope of astring of plotted pointsis defined as the
vertical change in the string divided by the horizontal
change, )y/)x. Thisisthe familiar definition of slope
from mathematics courses. In the plot given here, the
horizontal distance between two pointsis elapsed time,
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and the vertical distance is the total number of events
that occurred during that time period. Therefore,

dope = (number of events)/(elapsed time) ,

so the dope is a graphical estimator of the event fre-
guency, 8. A constant lope, or astraight line, indicates
aconstant 8 Changesin sope indicate changesin &.
if the slope becomes steeper, isincreasing, and if the
slope becomes less steep, &is decreasing.

641
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Date GC99 0292 9

Figure 6.23 Cumulative number of HPCI demands,
by date.

In Example 6.5 the time axis represents calendar
years. Because the relevant frequency is events per
reactor-critical-year, it would be better to plot the time
axis in terms of total reactor-critical-years from the
start of 1987. However, it is somewhat difficult to
calculate the reactor-critical-years preceding any
particular event, or equivalently, the reactor-critical-
years between successive events. Therefore, simple
calendar years are used. This is adequate if the
number of reactors operating at any time is fairly
constant, because then the rate per reactor-critical-
year remains roughly proportional to the rate per
industry-calendar year. In the present case, as
shown by Table 6.8, later calendar-years correspond
to more critical-years than do early calendar- years.

The slope in Figure 6.23 is steepest on the left, and
gradually lessens, so that the plot is rising fastest on
the left and more gently on the right. More HPCI
demands are packed into a time interval on the left
than into a time interval of the same length on the
right. This indicates that the frequency of unplanned
HPCI demands was decreasing during the time
period of the study. Thus, this figure leads to the
same general conclusion as does Figure 6.22.
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Figure 6.23 shows more detail, with the individual
events plotted, but it is less accurate in this example
because we have not gone through the work of
plotting events versus reactor-critical time.

It isimportant that the horizontal axis cover the entire
data-collection period and not stop at thefinal event. In
Figure 6.23, the lack of events during the last half of
1993 contributes to the overall curvature of the plot.

If the frequency is constant, the plot should follow a
roughly straight line. For comparison, it is useful to
show astraight diagonal line, going from height O at the
start of the data collection period to height n + 1 at the
end of the data coll ection period, where n isthe number
of data points.

In Figure 6.23, the diagonal line is shown as a dotted
line, rising from height 0 on the left to height n + 1 =
64 on the right.

As mentioned above, the early calendar years
contain fewer reactor-critical-years than do the later
calendar years. Therefore, the time axis in Figure
6.23 would reflect reactor-critical-years more accu-
rately if the left end of the axis were compressed
slightly or the right end were stretched slightly. The
effect would be to increase the curvature of the plot,
making it rise more quickly on the left and more
slowly on the right.

A cumulative plot contains random bounces and clus-
ters, so it is not clear whether the observed pattern is
more than the result of randomness. As aways, a
formal statistical test will be needed to measure the
strength of the evidence against the hypothesis of
constant event frequency.

6.2.3.2.2 Statistical Testsfor aTrend in 8

The Chi-Squared Test. Thisisthe sametest asgiven
in Section 6.2.3.1.2, only now the cells are years or
similar divisions of time.

In Example 6.5, the p-value is 0.009, meaning that a
random data set with constant & would show this
much variability with probability only 0.9%. Two
points are worth noting.

*  The chi-squared test makes no use of the order
of the cells. It would give exactly the same
conclusion if the intervals in Figure 6.22 were
scrambled in a random order instead of gener-
ally decreasing from left to right.



e The calculated p-value is accurate enough to
use, by the guidelines of Section 6.2.3.1.2,
because the number of events is 63, and the
number of cells is 7, so x/c = 63/7 = 9. Even
splitting the cells into six-month periods or smal-
ler periods would be justified.

Chapter 7 will take Figure 6.22, fit atrend, and perform
an additional test based on the fit; see Sections 7.2.3
and 7.2.4. Therefore, the chi-squared test is not dis-
cussed further here.

The Laplace Test. Thistest does not use the binning
of timesinto cells, but instead uses the exact dates. In
the example, there are 63 occurrences of events during
aseven-year period. Ingeneral, consider atimeinterval
[0, L], and suppose that during this period n events
occur at successive random times T, T,, ..., T,. Al-
though the number of occurrences, n, is random when
the plants are observed for afixed length of timeL, we
condition on thevalueof n, and so treat it as fixed.
Consider the null hypothesis:

H,: &isconstant over time.
Consider the alternative hypothesis:

H,: &iseither anincreasing or adecreasing function of
time.

This hypothesis says that the eventstend to occur more
at one end of the interval than at the other. A test that
is often used is based on the mean of the failure times,

T =X,T,/n. Theintuitive basis for the test is the

following. If &is constant, about half of the events
should occur before time L/2 and half afterwards, and
the average event time should be closeto L/2. Onthe
other hand, if &isdecreasing, more eventsare expected
early and fewer later, so the average event time should
be smaller than L/2. Similarly, if &isincreasing, the
average event timeis expected to be larger than  L/2.

Therefore, the test regjects H, if T is far from L/2.

Positive values of the difference T ! L/2 indicate an
increasingtrend, and negativevaluesindicateadecreas-
ing trend.

WhenH,istrue, T hasexpected valueL/2 and variance
L?/(12n). Theresulting test statistic is

T-L/2
L/+12n
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The statistic U is approximately standard normal for n
$ 3. Atestof H, at significance level 0.05 versus an
increasing alternative,

H,: &isincreasingintime,

would reject Hy if U $ 1.645. A 0.05 level test versus
a decreasing aternative,

H,: gisdecreasingintime,

would reject H, if U # 11.645. Of course, +1.645 are
the 95th and 5th percentiles, respectively, of the stan-
dard normal distribution. A two-sidedtest, that is, atest
against the original two-sided alternative hypothesis, at
the 0.10 level would reject H, if [U| $ 1.645.

This test, generaly known as the “Laplace” test, is
discussed by Cox and Lewis (1978, p. 47). The La
place test is known to be good for detecting a wide
variety of monotonic trends, and consequently it is
recommended as a general tool for testing against such
alternatives.

Let us apply the Laplace test to the HPCI-demand
data of Example 6.5. First, the dates must be con-
verted to times. The first event time is 0.011 years
after January 1, 1987, the final event is 6.581 years
after the starting date, and the other times are
calculated similarly. Here, a “year” is interpreted as
a 365-day year. The total number of 365-day years
is L = 7.00. The mean of the event times can be
calculated to be 2.73. Therefore, the calculated
value of U is

273-35

7.00/+12x% 63

This is statistically very significant. The value 3.02 is
the 0.1th percentile of the standard normal distribu-
tion. Thus, the evidence is very strong against a
constant demand rate, in favor instead of a decreas-
ing demand rate. Even against the two-sided hy-
pothesis

=-302 .

H,: &is increasing or decreasing in time,
the p-value is Pr( |U| > 3.02) = 0.002.

In the example, the Laplace test statistic was calcu-
lated in terms of calendar time instead of reactor-
critical-time. As remarked earlier, using reactor-
critical-time would increase the curvature of the plot
in Figure 6.23. A similar argument shows that using
reactor-critical-time in computing U would increase
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the strength of the evidence against the hypothesis
of a constant demand rate. However, the computa-
tions would be very tedious. That is an advantage of
the chi-squared test, because it is typically easier to
find the exact relevant exposure time for blocks of
time, such as years, than for each individual event.

In the example, the result of the Laplace test agrees
with the result from the chi-squared test, but is more
conclusive. The chi-squared test gave a p-value of
0.009, meaning that if H, is true, the cells would
appear so different from each other with probability
only 0.009. The Laplace test gives a p-value of
0.002.

The chi-sguared and Laplace tests differ because they
are concerned with different alternativesto H,. The
chi-sguared test is concerned with any variation from
cell to cell (from year to year in the example). If the
event rate goes up and down erratically, that isjust as
much evidence against H, asif the event rate decreases
monotonically. The Laplacetest, on the other hand, is
focused onthe alternative of atrend. 1t hasmore power
for detecting trends, but no power at al for detecting
erratic changes upward and downward.

Other tests exist in this setting. See Ascher and Fein-
gold (1984, page 80) and Engelhardt (1994, p. 19) for
details.

6.2.3.3 No Multiple Failures

The second assumption of the Poisson process is that
there are no exactly simultaneous failures. In practice
thismeansthat common-causefailuresdo not occur. In
most situations, common-causefailureswill occur from
time to time. This was seen in some of the examples
discussed in Section 2.2. However, if common-cause
events are relatively infrequent, their effect on the
validity of the Poisson model can normally be ignored.

No statistica methods are given here to examine
whether common-cause events can occur. Instead, the
analyst should think of the engineering reasons why
common-cause events might berareor frequent, and the
data should be examined to discover how freguent
common-cause events are in practice.

In Example 6.5, HPCI demands, it is reasonable that
common-cause events could occur only at multiple
units at a single site. There was one such pair of
events in the data, with HPCI demands at Hatch 1
and Hatch 2, both on 08/03/87. Examination of the
LERs reveals that the demands occurred from
different causes. They happened at different times,
and so were not exactly simultaneous. The conclu-
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sion is that common causes may induce exactly
simultaneous events, but they are infrequent.

If common-cause events are relatively frequent, so that
they cannot be ignored, it might be necessary to per-
form two analyses, one of the “independent”, or not-
common-cause, events, and one of the common-cause
occurrences. The frequency of independent events
could be estimated using the methods given here. The
common cause events would have to be analyzed by
other methods, such as methods described in the
references given in Section 1.3.

6.2.3.4 Independence of Digoint Time Periods

This section is less important than the others, and of
interest only to truly dedicated readers. Others should
skip directly to Section 6.2.3.5.

Thefina assumption of the Poisson model isthat event
occurrences in digoint time periods are statistically
independent. This should first be addressed by careful
thinking, similar to that in the examples of Section 2.2.
However, thefollowing statistical approachmay alsobe
useful.

One possible type of dependence would be if events
tend to cluster intime: large between-event timestend
to occur in succession, or similarly small ones tend to
occur insuccession. For example, supposethat arepair
isdoneincorrectly several timesin succession, leading
to small times between failures. The occurrence of a
failure on one day would increase the probability of a
failure in the next short time period, violating the
Poisson assumption. After the problem is diagnosed,
the personnel receive training in proper repair proce-
dures, thereafter resulting in larger times between
failures.

To illustrate the ideas, an example with no trend is
needed. The shutdown LOSP events introduced in
Section 2.2 can be used as such an example. The
data are restricted here to the years 1991-1996,
primarily to reduce any effect of the overall down-
ward trend in total shutdown tome. Atwood et al.
(1998) report 24 plant-centered LOSP events during
shutdown in 1991-1996. They are given as Exam-
ple 6.6.

Thenull hypothesisisthat the successivetimesbetween
events are independent and exponentially distributed.
We consider the aternative hypotheses that

» thetimes are not exponentially distributed, possi-
bly with more short times between events than
expected from an exponential distribution; or



*  successive times are correlated, that is that short
times tend to be followed by short times and long
times by long times.

Example 6.6

Dates of shutdown LOSP
events and days between

them.

days.

The consecutive dates of shutdown LOSP
events are shown in columns below. After each
date is the time since the preceding event, in
For the first event, the time since the
start of the study period is shown. Also, the
time is shown from the last event to the end of
the study period, a 25th “between-event time.”

03/07/91 66 04/02/92 10 09/27/94 129
03/13/91 6 04/06/92 4 11/18/94 52
03/20/91 7 04/28/92 22  02/27/95 101
04/02/91 13 04/08/93 345  10/21/95 236
06/22/91 81 05/19/93 41 01/20/96 91
07/24/91 32 06/22/93 34 05/23/96 124
10/20/91 88 06/26/93 4 — 223
01/29/92 101 10/12/93 108

03/23/92 54 05/21/94 221

Section 6.6.2.3 discusses ways to investigate whether
datacomefromaparticular distribution. Therefore, the
issue of the exponentia distribution is deferred to that
section. The issue of serial correlation motivates the
following procedure. Let y; be the ith time between
events, and let x, be the (i 1 1) time between events, x, =
V- Welook to seeif x; and y, are correlated.

In the above example, the first few (x, y) pairs are
(66, 6), (6, 7), and (7, 13), and the final pair is (124,
223).

6.2.3.4.1 Graphical Method

Asjust mentioned, theissue of whether the distribution
isexponential is deferred to Section 6.6.2.3. Consider
here the question of serial correlation. A scatter plot of
x versus y will indicate whether the values are corre-
lated. However, with skewed datathelarge valuestend
to be visually dominant, distorting the overall message
of the plot. One could try an ad hoc transformation,
such as the logarithmic transformation, but a more
universally applicable approach isto use the ranks of
the variables. That is, sort the n times in increasing
order, and assign rank 1 to the smallest time and rank n
to the largest time.

In the example, the two shortest times are each
equal to 4 days. Each is assigned the average of
ranks 1 and 2, namely 1.5. The next largest time is
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6 days, which is assigned rank 3, and so forth. The
17th and 18th times are each 101 days, so those two
are each assigned rank 17.5. Selected values of x,
y and their ranks are shown in Table 6.9. For com-
pactness, not all of the values are printed.

Table 6.9 Calculations for analyzing LOSP
dates.
X rank(x) y rank(y)
— — 66 13
66 13 6 3
6 3 7 4
7 4 13 6
13 6 81 14
81 14 32 8
32 8 88 15
88 15 101 17.5
101 17.5 54 12
54 12 10 5
52 11 101 17.5
101 17.5 236 24
236 24 91 16
91 16 124 20
124 20 223 23
223 23 — _

Figure 6.24 shows a scatter plot of rank(x) versus
rank(y). The plot seems to show very little pattern,
indicating little or no correlation from one time to the
next. The barely perceptible trend from lower left to
upper right (“southwest to northeast”) is probably not
meaningful, but a hypothesis test will need to be
performed to confirm or refute that judgment.

rank(x)

Figure 6.24 Scatter plot of rank(x) versus rank(y).
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6.2.3.4.2 Statistical Tests

Thissection considerswhether the between-event times
are seridly correlated. The question of whether they
are exponentially distributed is discussed in Section
6.6.2.3, under the topic of goodness-of-fit tests.

To test for correlation, it is not appropriate to assume
normality of the data. Instead, a nonparametric test
should be used, that is, atest that does not assume any
particular distributional form. A test statistic that is
commonly produced by statistical softwareisKendall’s
tau (J). Tauisdefined in Conover (1999), Hollander
and Wolfe (1999), and other books on nonparametric
statistics.

Based on the data of Table 6.9, the hypothesis of no
correlation between X and Y was tested. Kendall's
tau gave a p-value of 0.08. This calculation indicates
that the very slight trend seen in Figure 6.24 is not
statistically significant.

Recall, from the discussion of Section 6.2.3.1.2, that
a small p-value is not the end of an analysis. The p-
value for this example, although larger than the
customary cut-off of 0.05, is fairly small. This indi-
cates that the trend in Figure 6.24 is somewhat
unlikely under the assumption of no correlation. If
we are concerned about this fact, we must seek
possible engineering mechanisms for the trend. The
data are times between LOSP events in the industry
as a whole. Therefore, the most plausible explana-
tion is the overall industry trend of fewer shutdown
LOSP events. This trend would produce a tendency
for the short times to occur together (primarily near
the start of the data collection period), and the long
times to occur together (primarily near the end of the
data period).

6.2.3.5 Consistency of Data and Prior

As an example, if the prior distribution has mean
Eyio(8), but the observed data show x/t very different
from the prior mean, the analyst might wonder if the
dataand the prior are consistent, or if, instead, the prior
distribution was misinformed. To investigate this, one
could ask what the prior probability is of getting the
observed data. Actualy, any individual x may have
small probability, so a dlightly more complicated
guestion is appropriate.

Suppose first that x/t is in the right tail of the prior
distribution. Therelevant quantity istheprior probabil-
ity of observing x or more events. Thisis

Pr(X > x)= | Pr(X > x|A)f . (A)dA (6.6)

prior
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where

Pr(X > x|4) = 2 e ™) /k!
k=x

x-1 (6.7)
=1- Ye ™) /K
k=0

In general, Equation 6.6 does not have a direct analyti-
cal expression. However, in the specia case when the

prior distributionisgamma( "}, $yior), it can beshown
that the probability in question equals

Pr(X > x) =
1T (e + k)

B k
1 kZ::O K@) t/p)" @+t/p

—(a+k) (6-8)

where " (9) is the gamma function, a generalization of
the factorial function as described in Appendix A.7.6.
The distribution defined by Equation 6.8 is named the
gamma-Poisson or negative binomial distribution.
The above probahility can be evaluated with the aid of
software.

When Equation 6.8 is not applicable, one method of
approximating the integral in Equation 6.6 isby Monte
Carlo sampling. Generate alarge number of values of
&fromthe prior distribution. For each value of 8, lety
be the value of Equation 6.7, which can be calculated
directly. The average of they valuesis an approxima-
tion of theintegral in Equation 6.6. Another method of
approximating the Equation 6.6 isby numerical integra-
tion.

If the probability given by Equation 6.6 is small, the
observed dataare not consistent with the prior belief —
the prior belief mistakenly expected & to be smaller
than it apparently is. When should the probability be
considered “small”? Many people consider probabili-
ties < 0.05 to be “small,” but thereisno rigid rule.

Similarly, if x/tisintheleft tail of the prior distribution,
the relevant quantity isthe prior probability that X # x.
When the prior is a gamma distribution, the desired
probability is the analogue of the sumin Equation 6.8,

Pr(X<x) = kzilol;((%-(’-ak))(t/ﬂ)k(l'*t/ﬁ)(wrk)

In any case, the desired probability can be approxi-
mated by Monte Carlo sampling. If that probability is
small, the prior distribution mistakenly expected &to be
larger than it apparently is.



In Example 6.3, we ask whether the observed zero
failures in 2102 reactor-calendar-years is consistent
with the WASH-1400 prior, lognormal with median
1E-3 per year and error factor 10. To investigate
this, 100,000 random values of 8 were generated
from the lognormal prior. (The details are given
below.) For each 8 Pr(X # 0) = exp(121028) was
found. The mean of these probabilities was 0.245.
This is a sample mean, and it estimates the true
probability. It is not small, and therefore gives no
reason to question the applicability of the prior.

One must ask whether the sample was large enough.
The software that calculated the sample mean also
calculated the standard error to be 0.0009. Recall
from Section 6.2.1.2 that in general a 95% confi-
dence interval can be approximated as the estimate
plus or minus 2x(standard error). In this case, this
interval becomes 0.245 + 0.002. We conclude that
the true mean equals 0.245 except perhaps for
random error in the third digit. This shows that the
sample size was more than large enough to give an
answer to the accuracy required.

The recipe for generating &from alognormal distribu-
tion is as follows:

(1) Generate zfrom a standard normal distribution,
using commercial software,
(2) Define loglam = > + Fz, where : and F were

found in Section 6.2.2.7.2, and then
Define lambda = exp(loglam).

®)

6.3 Failuresto Change State:
Failure on Demand

Thissectionissimilar to Section 6.2, but the detailsare
different. The structure of this section parallelsthat of
Section 6.2 amost exactly, and some admonitionsfrom
that section are repeated here. The most important
topicsfor afirst-time reader are:

e Maximum likelihood estimation (6.3.1.1),

* Bayesian estimation, especialy with a discrete
prior or a conjugate prior (6.3.1-6.3.2.3), and

* Model validation, especialy using graphical tools
(portions of 6.3.3).

This section applies to data satisfying the assumptions
of Section 2.3.2.1. The probability of a failure on
demand is denoted p, a unitless quantity. The data
consist of x failures in n demands, withO # x # n.
Before the data are generated, the number of failuresis
random, denoted X. For any particular number X, the
probability of x failuresin n demandsis
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Pr(X = x) = @ pa-p", (69)

where the binomial coefficient is defined as

(n) B n!
k) ki(n-Kk)!

The methods will beillustrated by the following hypo-
thetical data set.

Example 6.7 AFW turbine-train failure to start

In the last 8 demands of the turbine train of the
auxiliary feedwater (AFW) system at a PWR, the
train failed to start 1 time. Let p denote the
probability of failure to start for this train.

As in Section 6.2, frequentist methods are presented
first, followed by Bayesian methods. This choice is
made because the frequentist point estimate is so very
simple, not because frequentist estimationis preferable
to Bayesian estimation. Indeed, in PRA pisnormally
estimated in a Bayesian way.

6.3.1 Frequentist or Classical Estimation
6.3.1.1 Point Estimate

The most commonly used frequentist estimate is the
maximum likelihood estimate (MLE). It isfound by
taking the likelihood, given by Equation 6.9, and
treating it asafunction of p. The value of p that maxi-
mizes the likelihood is called the MLE. It can be
shown, by setting a derivative to zero, that the maxi-

mum likelihood estimate (MLE) of pis p= x/n,

Thisisintuitively appealing — the observed number of
failures divided by the observed number of demands.

Figure 6.25 shows the likelihood as a function of p,
for the data of Example 6.7. The figure shows that
the likelihood is maximized at p = 1/8, as stated by
the formula.

If several subsetsof data, such as data corresponding to
severa plants, several types of demand, or several
years, are assumed to have the same p, data from the
various sources may be combined, or pooled, for an
overall estimate. Denoting the number of failures and
demandsin datasubset j by x and ny, respectively, let x
=Exandn= En. TheMLEisx/n.
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Figure 6.25 Likelihood as a function of p, for the
data of Example 6.7.

As mentioned in Section 6.2.1.1, final answerswill be
shown in this handbook with few significant digits, to
avoid giving the impression that the final answer
reflects precise knowledge of the parameter. Inter-
mediate values will show more significant digits, to
prevent roundoff errors from accumulating.

6.3.1.2 Standard Deviation of Estimator

The number of failuresisrandom. One number wasob-
served, but if the demands were repeated a different
number of failures might be observed. Therefore, the
estimator is random, and the calculated estimate is the
value it happened to take this time. Considering the
data as random, one could write P= X /n. This
notation is consistent with the use of upper case letters
for random variables, athough it is customary in the
literature to write p for both the random variable and
the calculated value. The standard deviation of the
estimator is [p(1 - p)/n]Y%2  Substitution of the
estimate p for p yields an estimate of the standard

deviation,

[p(1-p)/n]"2 .

Theestimated standard deviation of an estimator isalso
called the standard error of the estimate. The handy
rule given in Section 6.2.1.2 applies here as well:

MLE + 2x(standard error)
is an approximate 95% confidenceinterval for p, when

the number of demands, n, islarge. However, an exact
confidence interval is given below.
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In Example 6.7, the standard error for p is
[0.125 x (1 - 0.125) / 8]** = 0.12.
6.3.1.3 Confidence Interval for p

Confidence intervals are used in two ways in this
handbook. They give a standard of comparison, when
Bayes credible intervals are found based on so-called
noninformative priors, and they can be used (but are not
required) in some plots for validating model assump-
tions. Therefore, readers may wish to skim the present
section quickly on the first reading.

The interpretation of confidence intervals is given in
Appendix B and in Section 6.2.1.3. It is so important
that it isrepeated here. In the frequentist approachpis
fixed and the dataarerandom. Thereforethe maximum
likelihood estimator and the confidence limits are all

random. For most data sets, the MLE, p , will beclose

to the true value of p, and the confidence interval will
containp. Sometimes, however, theMLE will berather
far from p, and sometimes (less than 10% of the time)
the 90% confidence interval will not contain p. The
procedure is good in the sense that most of the time it
gives good answers, but the analyst never knowsiif the
current data set is one of the unlucky ones. A figure
like Figure 6.4 could be constructed for p, to illustrate
that many data sets could be generated from the samep,
yielding many confidence intervals, most of which
contain the true value of p.

The following material is drawn from Johnson et al.
(1992, Section 3.8.3). A confidenceinterval for p can
be expressed in terms of percentiles of a beta distribu-
tion. Appendix A.7.8 presentsthe basic facts about the
beta distribution. As mentioned there, the beta family
of distributions includes many distributions that are
defined on the range from 0 to 1, including the uniform
distribution, bell-shaped distributions, and U-shaped
distributions. The beta distribution is also discussed
morefully in the section below on Bayesian estimation.

Denote the lower and upper ends of a100(1 ! "%
confidence interval by Peoy 72 @8 Peort. 11 400 FESPEC-
tively. It can be shown that the lower limit is

Peort, 12 = bEta(X, N 1 X+ 1)

and the upper limit is

Peort, 1172 = betafl_l '72(X +1,n! X)



where betg,(", $) denotesthe q quantile, or 100xq
percentile, of the beta( ", $) distribution. For example,
a90% confidenceinterval for p isgiven by beta, ,s(X, n
I x+1)andbeta (x + 1, n 1 X). If x=0, the beta
distribution for the lower limit is not defined; in that
Case, Set Peyr -7 = 0. Similarly, if x = n, the beta distri-
bution for theupper limit isnot defined; in that case, set
Peort. 11 2 = 1. In any case, note carefully that the
parameters of the beta distribution are not quite the
same for the lower and upper endpoints.

Appendix C tabulates selected percentiles of the beta
distribution. However, interpolation may be required.
Some software packages, including commonly used
spreadsheets such as Microsoft Excel (2001) and
Quiattro Pro (2001), calculate the percentiles of the beta
distribution. Those cal culationsare more accurate than
interpolating tables. Finally, Appendix A.7.8 gives a
last-resort method, which allows beta percentilesto be
cal culated by complicated formulasinvolving tabul ated
percentiles of the F distribution.

In Example 6.7, with 1 AFW train failure in 8
demands, suppose that a 90% interval is to be
found. Then "*=0.10, and 1! "72 =0.95. For the
lower limit, beta, (1, 811+1) = 6.39E!3, from
Table C.5. Thus,

Peont, 0.05 = 0.0064.

For the upper limit, beta, o;(1+1, 811) = 4.71E11,
also from Table C.5. Thus,

Peont, 005 = 0.47.

6.3.2 Bayesian Estimation

Section 6.2.2.1 gives an overview of Bayesian estima-
tion, which applies here. Just asfor &in that section,
Bayesian estimation of p involves severa steps. The
prior belief about p is quantified by a probability
distribution, the prior distribution. This distribution
will be restricted to the range [0,1], because p must lie
between 0 and 1, and it will assign the most probability
to the values of p that are deemed most plausible. The
data are then collected, and the likelihood function is
constructed. The likelihood function is given by
Equation 6.9 for failures on demand. It isthe probabil-
ity of the observed data, written asafunctionof p.
Finally, the posterior distribution is constructed, by
combining the prior distribution and the likelihood
function through Bayes theorem. The posterior
distribution shows the updated belief about the values
of p. It isamodification of the prior belief that ac-
counts for the observed data.
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Figure 6.5, showing the effect of various data sets on
the posterior distribution, isworth studying. Although
that figurerefersto 8, exactly the same idea applies
to p.

The subsections below consider estimation of p using
variouspossible prior distributions. The simplest prior
distributionisdiscrete. The posterior can be calculated
easily, for example, by a spreadsheet. The next sm-
plest prior is called conjugate; this prior combines
neatly with thelikelihood to give a posterior that can be
evaluated by simpleformulas. Finally, themost general
priorsare considered; the posterior distribution in such
acase can only be found by numerical integration or by
random sampling.

Section 6.2.2.2 discusses how to choose a prior, and
gives references for further reading. It applies to
estimation of p as much as to estimation of &, and
should be read in connection with the material given
below.

6.3.2.1 Estimation with a Discrete Prior

The explanation here will be easier to follow if the
examples in Section 6.2.2.3 have also been read. The
parameter p is assumed to take one of only m possible
values, p, ... , P Denotethep.d.f.by f, so f(p) =
Pr(p,), the prior probability that the parameter has the
valuep,. After evidenceEisobserved, Bayes' theorem

Says:

f(p)L(EIP)
> L(EIp)f(p)

f(plE)= (6.10

where

f(p; | E) = the probability of p, given evidence E
(posterior distribution),

f(p) =the probability of p, prior to having evidence
E ( prior distribution), and
L(E | p;) = the likelihood function (probability of the

evidence given p,).

Just asin Section 6.2.2.3, the denominator in Equation
6.10, the total probability of the evidence E, is simply
anormalizing constant.

When the evidence is in theform of x failures in n
demands and the assumptions for a binomial distribu-
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tion are satisfied, thelikelihood functionisthe given by
Equation 6.9:

L) = | N

As an example, let us use the data in Example 6.7.
We will use a discrete prior distribution, just as in
Section 6.2.2.3. Unlike the examples in that earlier
section, the present example uses an informed prior.
Assume that a prior distribution was developed by
plant equipment experts based on population vari-
ability data from similar systems, but adapted to
account for untested new design aspects of this
system. The prior is defined on 81 points, for p = 0,
0.01, 0.02, ..., 0.8. The most likely value is p = 0.1.
From there, the prior falls linearly until p = 0.3, then
tails off to 0 at p = 0.8. On the low end it falls
linearly to 0 at p = 0. The distribution is shown in
Figure 6.26.
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Figure 6.26 Discrete informative prior distribution
for p.
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This prior is discrete. We will want to compare the
prior with the posterior distribution, and the graph of
two discrete distributions is easier to read if just the
tops of the vertical bars are plotted. The resulting
plot of the prior looks like a continuous density, but it
still is intended to represent the above discrete
distribution.

The likelihood function is shown in Figure 6.25. The
posterior distribution is proportional to the product of
the prior and the likelihood, normalized so that the
total probability equals 1. Figure 6.27 shows the
prior and the posterior distributions on the same plot.
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Figure 6.27 Discrete prior and posterior distribution
for data in Example 6.7.

Note that the posterior follows the shape of the prior
very closely. This is because the data are consistent
with the peak area of the prior, but are not yet strong
enough to appreciably reduce the uncertainty in the
prior — there are only eight demands.

What happens to this posterior as additional data
accumulate? Suppose that ten times as much data
had been collected, 10 failures in 80 demands. The
likelihood function, given by Equation 6.9 with this
new data set, is shown in Figure 6.28.
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o
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p
Figure 6.28 Likelihood as a function of p, for ten

times the data of Example 6.7.

The posterior distribution is proportional to the
product of the prior and this new likelihood. Figure
6.29 shows the prior and this new posterior.

Table 6.10 compares the results of the Bayesian
analyses with the original data and with ten times as
much data.



0.15

--o-- prior Pr(p)
—e— posterior Pr(p)

0.10

Pr(p)

0.05

0.00 . u u
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Figure 6.29 Discrete prior and posterior distributions
for p, with 10 times as much data as in previous
figure.

Table 6.10 Comparison of Bayesian
distributions.

Distribution 5th mean 95th
%tile %tile

Prior 0.04 0.206 | 0.54

Posterior, original 0.05 0.153 | 0.29

data

Posterior, ten times 0.07 0.130 | 0.19

more confirmatory

data

The difference between the two posterior distribu-
tions results from the differences between the two
likelihoods. In this hypothetical example, both data
sets have the same MLE, 0.125, but the larger data
set has a likelihood that is more concentrated. The
posterior distribution from the larger data set is
dominated by the likelihood, and closely resembles
it.

Readersare strongly encouraged to work through afew
examples like this on their own. The calculations are
easy to carry out with a spreadshest.

6.3.2.2 Estimation with a Conjugate Prior
We now consider the use of continuous prior distribu-

tions, beginning with a very convenient family of
distributions, the conjugate priors.
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6.3.2.2.1 Definitions

By far the most convenient form for the prior distribu-
tion of p is a beta( "y, Fyio) distribution. The beta
distributionsare the conjugate family for binomial data.
The properties of the beta distribution are therefore
summarized here, aswell asin Appendix A.7.8.

If p has abeta( ", $ distribution, the density is

I'(e+ B)

= P - p)Y
T(a)T(5)

f(p)

For most applications the gamma functionsin the front
can be ignored — they only form a normalizing con-
stant, to ensure that the density integratesto 1. The
important feature of the density is that
f(p)%p™ (11 p)°tt (6.11)
where the symbol % denotes “is proportional to.” The

parameters of the distribution, **and $, must both be
positive. The mean and variance of thedistribution are

=19, (6.12)
variance = 2aﬂ
(ax+ P (a+ p+1
= (AN )I("+FHL). (6.13)

The shape of the betadensity depends on the size of the
two parameters. If "'< 1, the exponent of p isnegative
in Equation 6.11, and therefore the density is un-
bounded as p 6 0. Likewise, if $< 1, the density is
unbounded as p 6 1. If both "> 1 and $> 1, the
density is roughly bell shaped, with a single mode.
Appendix A.7.8 shows graphs of some beta densities.
Equation 6.13 shows that as the sum **+ $ becomes
large, the variance becomes small, and the distribution
becomes more tightly concentrated around the mean.

Aswill be seen below, if the prior distributionis abeta
distribution, so isthe posterior distribution. Therefore,
the above statements apply to both the prior and the
posterior distributions.

Appendix C tabulates selected percentiles of beta
distributions. Also, thepercentilesof abetadistribution
can be found by many software packages, including
some spreadsheets. Also, the percentiles can be ob-
tained from algebraic formulasinvolving percentil es of
the F distribution, as explained in Appendix A.7.8.
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6.3.2.2.2 Update Formulas

Thebetafamily is conjugateto binomial data. That s,
updating abetaprior distributionwith thedataproduces
a posterior distribution that is also a beta distribution.
This follows immediately from the derivation of the
posterior distribution. By Bayes theorem (Appendix
B.5), the posterior distribution is related to the prior
distribution by

fpos{( p) o< Pr(x = Xl p) 1:prior( p) . (614)

This is the continuous analogue of Equation 6.10. As
mentioned in the earlier sections, the probability of the
data is aso called the “likelihood.” It is given by
Equation6.9. Stripped of all thenormalizing constants,
the beta p.d.f. is given by Equation 6.11.

Therefore, the beta distribution and the binomial
likelihood combine as:

foo(P) o P*(1— )™ p* (21— p)*
oc p><+zx—1(1_ p)n—x+[f—1 .

Inthefinal expression, everything that doesnot involve
p has been absorbed into the proportionality constant.
Thisshowsthat the posterior distribution is of theform
beta( “fos, Fos), With

—
post —  prior +X

‘5;3051 = $prior + (n ! X) .

The mean and variance of the prior and posterior
distributions are given by Equations 6.12 and 6.13,
using either the prior or posterior ““and .

These update formulas give intuitive meaning to the
beta parameters. ", correspondsto aprior number of
failures and 8, to a prior number of successes.
Assuming abeta( ", , Fyior ) distribution is equivalent
to having observed “};, failures and $,, successes
before the current data were observed.

6.3.2.3 Possible Conjugate Priors

A concentrated distribution (small variance, largevalue
of "ior + Buvior) rEPresents much presumed prior know-
ledge. A diffuse prior (large variance, small value of

”

vior + Borior) rEQresentsvery little prior knowledge of p.
6.3.2.3.1 InformativePrior

Thewarning given in Section 6.2.2.5.1 applies here as
well: the prior distribution must be based on informa-
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tion other than the data. If possible, relevant informa-
tion from the industry should be used.

The calculations are now illustrated with Example
6.7, one failure to start in eight demands of the AFW
turbine train. Poloski et al. (1998) examined nine
years of data from many plants, and found a
beta(4.2, 153.1) distribution for the probability of the
AFW train failure to start.

Application of the update formulas yields

Most = i FX=42+1=52

post —  prior

Fost = Byior + (N 1 x) =153.1 + (8 11) = 160.1 .
The mean of this distribution is

5.2/(5.2 + 160.1) = 0.031,

and the variance is

0.031x(1 1 0.031)/(5.2 + 160.1 + 1) = 1.89E 14,

and the standard deviation is the square root of the
variance, 0.014. The 5th and 95th percentiles of the
posterior beta( **, $) distribution are found from Table
C.5, except the tabulated $values do not go above
100. A footnote to that table gives an approximation
that is valid for $>> " That formula applies, be-
cause 160.1 >> 5.2. According to the formula the g
quantile is approximated by

P((2%5.2)/[2x160.1 + P,(2%5.2)].

Therefore the 5th percentile of the beta distribution is
approximately

P, 05(10.4)/[320.2 + P, 1(10.4)] = 4.19/[320.2 + 4.19]
=0.013,

and the 95th percentile is approximately

P, 0s(10.4)/[320.2 + P, 4(10.4)] = 18.86/[320.2 +
18.86] = 0.056 .

All these quantities are unitless.

The prior density, posterior density, and posterior
c.d.f. of p are shown in Figures 6.30 through 6.32.

The posterior density is slightly to the right of the
prior density. It is to the right because the data, one
failure in eight demands, show worse performance
than the industry history. The posterior density is
only slightly different from the prior density because
the data set is small compared to the industry experi-
ence (eight demands in the data and an effective
157.3 demands for the industry).
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Figure 6.30 Prior density for p, beta(4.2, 153.1).
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Figure 6.31 Posterior density for p, beta(5.2, 160.1).
The 5th and 95th percentiles are shown.
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Figure 6.32 Posterior cumulative distribution of p.
The 5th and 95th percentiles are shown.

The 5th and 95th percentiles are shown for the
posterior distribution, both in the plot of the density
and in the plot of the cumulative distribution.
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6.3.2.3.2 Noninformative Prior

The Jeffreys noninformative prior is beta(*2 , ¥2); see
Box and Tiao (1973), Sections 1.3.4-1.3.5. This
density is shown in Figure 6.33. It is not the uniform
distribution, which is a beta(1, 1) distribution, but
instead rises sharply at the two ends of the interval
©, 1).

0 0.2 0.4 0.6 0.8 1

p GCO0 0505
Figure 6.33 Jeffreys noninformative prior distribution
for p.

Although the uniform distribution is sometimes used to
model no prior information, there are theoretical
reasonsfor preferring the Jeffreysnoninformativeprior.
These reasons are given by Box and Tiao, and are
suggested by the comparison with confidence intervals
presented below. The uniform distribution would
correspond intuitively to having seen onefailurein two
demands, which turns out to be too informative. The
Jeffreys noninformative prior corresponds to having
seen one-half afailure in one demand.

The Bayes posterior distribution for p, based on the
Jeffreysnoninformative prior, isbeta(x + %2, n 1 x + %%).
The mean of the distribution is (x + ¥2)/(n + 1). Se-
lected percentiles are tabulated in Appendix C.

The posterior distribution given here is very similar to
the distributions used in the formulas for confidence
intervalsin Section 6.3.1.3. The only differenceisin
the parameters. The parameters here are averages of
the parameters used in the confidence intervals. For
example, the first parameter for the lower confidence
limit is x, and the first parameter for the upper confi-
dence limit is x+1. The Bayesian limits, on the other
hand, use the same parameters for the entire posterior
distribution, and the first parameter is x + 2, the aver-
age of the corresponding values for the confidence
limits.



Parameter Estimation and Model Validation

In Example 6.7, failure to start of the turbine-driven
AFW train, the posterior distribution is beta(1.5, 7.5).
The posterior mean is 1.5/(1.5 + 7.5) = 0.17. The
posterior 90% interval is (0.023, 0.40). As is always
the case with discrete data, the confidence interval is
conservative, and so is wider than the Jeffreys
credible interval. However, the two intervals are
similar to each other, being neither to the right nor
the left of the other. Tabular and graphical compari-
sons are given later.

6.3.2.3.3 Constrained Noninformative Prior

This prior distribution is a compromise between an
informative prior and the Jeffreys noninformativeprior.
As was the case in Section 6.2.2.5.3, the prior mean,
denoted here as p,, is based on prior belief, but the
dispersionisdefined to correspond tolittleinformation.
The priors are described by Atwood (1996) and by
references given there.

For binomial data, the constrained noninformativeprior
distribution is not as neat as for Poisson data. The
exact constrained noninformative prior has the form
fprior(p) % ebpp!JJZ(l ! p)!:IJZ ’ (615)
where b is a number whose value depends on the
assumed value of the mean, p,. The parameter b is
positive when p, > 0.5 and is negative when p, < 0.5.
Thus, in typical PRA analysis b is negative. Atwood
(1996) gives a table of values, a portion of which is
reproduced in Appendix C as Table C.8. The table
gives the parameter b of the distribution for selected
valuesof p,. Inaddition, it givesabetadistribution that
has the same mean and variance as the constrained
noninformative prior.

Thebetaapproximationisillustrated here, and theexact
constrained noninformative distributionistreated more
fully in the section below on nonconjugate priors.

Return again to Example 6.7, the AFW turbine train
failure to start. Let us use the mean of the industry
prior found above, 4.2/157.3 = 0.0267. However,
suppose that the full information for the industry prior
is not available, or that the system under consider-
ation is considered atypical so that the industry prior
is not fully relevant. Therefore, the beta-approxima-
tion of the constrained noninformative prior will be
used.

Interpolation of Table C.8 at p, = 0.0267 yields "=
0.4585. Solving $= "1 ! p,)/p, gives $=16.7138.
The resulting posterior distribution has parameters
1.4585 and 23.7138. Interpolation of Table C.5 gives
a 90% interval of (0.0068, 0.15).
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6.3.2.3.4 Example Comparison of Above M ethods

Just asin Section 6.2, the following general statements
can be made:

*  The Jeffreys noninformative prior results in a
posterior credible interval that is numerically
similar to a confidence interval.

o If the prior mean exists, the posterior mean is
between the prior mean and the MLE.

e If two prior distributions have about the same
mean, the more concentrated (less diffuse) prior
distribution will yield the more concentrated
posterior distribution, and will pull the posterior
mean closer to the prior mean.

Figure 6.34 and Table 6.11 summarize the results of
analyzing the AFW-failure-to-start data in the four
ways given above.

Frequentist |-

Bayes, Jeffreys Noninf. Prior
Bayes, Industry Prior

Bayes, Constr. Noninf. Prior

——

—

0 04 02 03 04 05
p (failures/demand) 6099028214

Figure 6.34 Comparison of four point estimates and
interval estimates for p.

As in Section 6.2.2.5.4, the Jeffreys prior and the
frequentist approach are listed next to each other
because they give numerically similar results. The
Jeffreys prior yields a posterior credible interval that
is strictly contained in the confidence interval, neither
to the right nor to the left.

In each Bayesian case, the posterior mean falls
between the prior mean and the MLE, 0.125. The
prior distribution has more influence when the prior
distribution is more tightly concentrated around the
mean. One measure of the concentration (at least
when the means are similar) is the sum "}, + 8,
because it corresponds to the total number of prior
demands, and itis in the denominator of the variance
in Equation 6.13. In the present example, when the
prior distributions in Table 6.11 are ordered by
increasing values of "\, + .. the order is the
noninformative prior, then the approximate con-
strained noninformative prior, and finally the industry
prior. The three 90% intervals for the corresponding
posterior distributions have decreasing length in the
same order.
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Table 6.11 Comparison of estimates with one failure in eight demands.

Method Prior mean Posterior Point estimate 90% interval (confidence

parameters (MLE or interval or posterior credi-
posterior mean) [ ble interval)

Frequentist NA NA 0.125 (0.0064, 0.47)

Bayes with Jeffreys 0.5 =15 0.17 (0.022, 0.40)

noninformative prior, $=75

beta(0.5, 0.5)

Bayes with industry prior, 0.027 =52 0.031 (0.013, 0.056)

beta(4.2, 153.1) $=160.1

Bayes with approx. con- 0.027 "= 1.4585 0.058 (0.0068, 0.15)

strained noninform. prior, $=23.7138

beta(0.4585, 16.7138)

6.3.2.4 Estimation with a Continuous
Nonconjugate Prior

Just as for &, continuous nonconjugate priors for p
cannot be updated with simple algebra. The resulting
posterior distribution does not have a simple form.
Therefore, to enter it asthe distribution of abasic event
inaPRA code, adiscrete approximation of the distribu-
tion must usually be used.

The posterior distribution must be obtained by numeri-
cal integration or by random sampling. Three methods
are mentioned here, and the analyst may choose what-
ever seems easiest.

6.3.2.4.1 Direct Numerical Integration

To use numerical integration, use Equation 6.14 and
write the posterior distribution as the product of the
likelihood and the prior distribution:
Cloos(P) = P(1 1 P)" " Foriar(P) - (6.16)
Here Cisaconstant of proportionality. All the normal-
izing congtants in f,;, and in the likelihood may be
absorbed into C, leaving only the parts that depend on
p on the right-hand side of the equation. Integrate
Cfos(p) fromOto 1. That is, integrate the right hand
side of Equation 6.16. Thisintegral equals C, because
theintegral of f,, must equal 1. Divide both sides of
Equation 6.16 by the just-found constant C, to obtain
the function .. Use numerical integration to find the
moments and percentiles of this distribution. Some
suggested methods of numerical integration are men-
tioned in Section 6.2.2.6.
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6.3.2.4.2 Simple Random Sampling

To userandom sampling, follow therejection algorithm
givenin Section 6.2.2.6. The general algorithm, given
in Section 6.2.2.6, can be restated for binomial data as
follows. Define

m= (x/n)(1 1 x/n)"*

ifO<x<n. Ifx=0o0rx=n, definem= 1. The steps
of the algorithm are:

(1) Generate arandom p from the prior distribution.

(2) Generate u fromauniform distribution, 0# u # 1.

(3) If u# p(1 ! pP"*/m, accept p in the sample.
Otherwise discard p.

Repeat Steps (1) through (3) until a sample of the
desired sizeisfound.

6.3.2.4.3 More Complicated Random Sampling

All-purpose Bayesian update programs can be used for
the present simple problem, just asin Section 6.2. The
powerful program BUGS is mentioned in Section
6.2.2.6.3, and described more fully in Sections 7.2.3
and 8.3.3.3. It can be used here, althoughit isintended
for much more complicated problems.

6.3.2.5 Exampleswith Nonconjugate Priors

Several possible nonconjugate prior distributions are
discussed here.
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6.3.2.5.1 Lognormal Distribution

Thelognormal distributionisby far themost commonly
used nonconjugate distribution. The parameter p hasa
lognormal distribution if In(p) is normaly distributed
with some mean . and variance ~.

Facts about the lognormal distribution are given in
Appendix A.7.3. Oneimportant fact isthat the range of
the lognormal distribution is from 0 to 4. Thus, the
distribution of p cannot be exactly lognormal, because
p cannot be greater than 1. When using a lognormal
prior, one must immediately calculate the prior Pr(p >
1). If this probability is very small, the error can be
neglected. (When generating values p from the log-
normal distribution, either throw away any values
greater than 1 or set them equal to 1. In either case,
such values hardly ever occur and do not affect the
anaysisgreatly.) Ontheother hand, if the prior Pr(p >
1) is too large to be negligible, then the lognormal
distribution cannot possibly be used. Even if the
software accepts the lognormal distribution, and hides
the problem by somehow handling the values that are
greater than 1, the actua distribution used is not
lognormal. Itistruncated lognormal, or lognormal with
aspikeat 1, with adifferent mean and different percen-
tilesfromtheinitially input lognormal distribution. The
analyst’s two options are to recognize and account for
this, or to use adifferent prior distribution.

To use the above sampling algorithm with alognormal
prior, p must be generated from alognormal distribu-
tion. The easiest way to do thisis first to generate z
from a standard normal distribution, that is, a normal
distribution with mean = 0 and variance = 1. Many
software packages offer thisoption. Then, lety= -+
Fz, so that y has been generated from anormal( -, A)
distribution. Finally, let p = €. It follows that p has
been randomly generated from the specified lognormal
distribution.

6.3.2.5.2 Logistic-Normal Distribution

Thisdistribution is explained in Appendix A.7.9. The
parameter p has a logistic-norma distribution if
In[p/(1 1 p)] isnormally distributed with some mean >
and variance /2. The function In [p/(1 ! p)] is called
the logit function of p. It is an analogue of the
logarithm function for quantities that must lie between
Oand 1. Using thisterminology, p hasalogistic-normal
distribution if logit(p) is normally distributed.

Properties of the logistic-normal distribution are given
in Appendix A.7.9, and summarized here. Lety =
IN[p/(1 ¥ p)]. Thenp=¢€'/(1+¢). Thisistheinverse
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of the logit function. Asp increases from0Oto 1,y
increases from 14 to +4.

Note, unlike a lognormally distributed p, a logistic-
normally distributed p must be between O and 1.
Therefore, the logistic-normal distribution could be
used routinely by thosewho likethelognormal distribu-
tion, but do not know what to do when the lognormal
distribution assigns p avalue that is greater than 1.

Therelation between p and y = logit(p) givesaway to
quantify prior belief about p in terms of a logistic-
normal distribution. First, decide on two values, such
as lower and upper plausible bounds on p or a median
and plausible upper bound, equate them to percentiles
of p, trandlate those percentiles to the corresponding
two percentiles of the normal random variable Y, and
finally, solve those two equations for - and ~.

To generate a random value from a logistic-normal
distribution, first generate y from a normal (-, /)
distribution, exactly as in the section above on the
lognormal distribution. Thenletp= €'/ (1+ €). This
p has been randomly generated from the specified
logistic-normal distribution.

6.3.2.5.3 Exact Constrained Noninformative
Distribution

The prior distribution has the form of Equation 6.15,
and the posterior distribution is

fpog(p) = Clebpr! 112(1 1 p)n 11172 ,

where C; isanormalizing constant to make the density
integrate to 1.0. Except for the normalizing constant,
this is €® times a beta(x+%, n1x+Ys) distribution.
Numerical integration is straightforward, and will not
be explained here. To generate a sample from the
posterior distribution, the rejection method agorithm
originaly given in Section 6.2.2.6 takes the following
form.

Write the beta(x+Y%%, n!x+Y%%) density as

fasP) = G V(L1 p) X132

Typically, the desired mean of pislessthan 0.5; if itis
not, reverse theroles of pand 1 ! p. The agorithm
first defines M to be the maximum possible value of the
ratio f,s(P) / fuea(P). Because b < 0 in Table C.8, we
have € # 1, making M equal to C,/C,. Therefore, the
condition in Step (3) of the algorithm reduces to

u#er.



Therefore, the algorithm simplifies to the following:

(1) Generate arandom p from the beta(x+Y%, N1 x+%%)
distribution. Waysto do this are discussed below.

(2) Generate u fromauniformdistribution, 0 # u # 1.

(3) If u# €, accept p in the sample. Otherwise
discard p.

Repeat Steps (1) through (3) until a sample of the
desired sizeis found.

Not al standard software packages give the option of
generating random numbers from a beta distribution,
athough many more allow random number generation
from a gamma distribution or from a chi squared
distribution. When working with such software, let y;
berandomly generated from agamma(x+¥2, 1) distribu-
tion and let y, be randomly generated from a
gamma(nx+%, 1) distribution. Alternatively, lety, be
randomly generated fromachi-sguared(2x+1) distribu-
tion and let y, be randomly generated from a chi-
squared(2n! 2x+1) distribution. In either case, definep
= yv)/(y;+Y,). Then, p has been generated from the
specified beta(x+Y%, NI x+Y2) distribution. (See Chapter
25 of Johnson et al. 1995.)

6.3.2.5.4 Maximum Entropy Prior

The maximum entropy prior and the constrained nonin-
formative prior were developed with the same goal: to
produce adiffusedistribution with aspecified plausible
mean. The diffuseness of the maximum entropy distri-
bution is obtained by maximizing the entropy, defined
as

~E[In f(p)]=~I[In f(p)If (p)dp .

When p isrestricted to the range from 0 to 1, it can be
shown that the density f maximizing the entropy is
uniform,
f(pp=1 forO#p#1l

and f(p) = O elsewhere. More interesting is the case
when the mean of the distribution is required to equal
some prespecified value p,. In this case the maximum
entropy distribution has the form of a truncated expo-
nential distribution,

f(p) =Ce® forO#p#1

and f(p) = 0 elsewhere. Inthisform, bisnegative when
p, < 0.5 and b is positive when p, > 0.5. The value of
b corresponding to a particular mean must be found by

numerical iteration. Some authors write e instead of
€; this simply reverses the sign of the parameter b.
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The maximum entropy distribution and the uniform
distribution are related — if the constraint on the mean
is removed, the maximum entropy distribution equals
the uniform distribution. In this sense, the maximum
entropy distribution is a generalization of the uniform
distribution. The constrained noninformative distribu-
tion is the same sort of generaization of the Jeffreys
noninformative distribution — if the constraint is
removed, the constrained noninformative prior becomes
the Jeffreys noninformative prior. Atwood (1996)
reviewsthe reasonswhy the Jeffreysprior issuperior to
the uniform prior, and uses the same reasoning to argue
that the constrained noninformative prior is superior to
the maximum entropy prior.

Inpractice, it may makelittledifferencewhich distribu-
tionisused. Both distributions are intended to be used
when little prior knowledge is available, and quantify-
ing“littleprior knowledge” isnot something that can be
done precisely.

Sampling from the posterior distribution is similar to
the other sampling procedures given above, so most of
the details are not given. The only point deserving
discussionishow to generate arandom samplefromthe
maximum entropy prior. The most convenient method
is the inverse c.d.f. algorithm. This agorithm is
simple in cases when the c.d.f. and its inverse can be
calculated easily.

For example, let the random variable P have c.d.f. F.
Let F'! be the inverse function, defined by u = F(p) if
andonly if p=F'Y(u). Let U bedefined asF(P). What
isthe distribution of U? The c.d.f. of U isfound by

Pr(U#u) =Pr[ F(P) # u]
=P P#F'(u)]
=F[F'(u)] becauseF isthec.d.f. of P
=u.

Therefore, U has a uniform distribution. The letter U
was not chosen by accident, but in anticipation of the
uniform distribution.

To generate arandom value p from the distribution F,
generate a random u from the uniform (0, 1) distribu-
tion, something that many software packages allow.
Then define p = F'}(u). This is the inverse c.df.
method of random number generation.

To apply thisto the maximum entropy distribution, first
integrate the maximum entropy density to yield the
c.df.

F(o)=(11eM)/(11¢e).
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Generate u from a uniform(0, 1) distribution, and set
u=@Q11eM/(1L1e).

Solve this equation for p,

p=tn[1' (1! e)ulb.

Then, p has been randomly generated from the maxi-
mum entropy distribution. Repesat thiswith new values
of u until enough values of p have been obtained.

6.3.2.5.,5 Example Calculation

These techniques will be illustrated with the
Example 6.7, one failure to start in eight demands of
the AFW turbine train. Two prior distributions will be
assumed, the lognormal prior used by the Accident
Sequence Evaluation Program (ASEP), as presented
by Drouin et al. (1987), and a logistic-normal distribu-
tion having the same 50th and 95th percentiles.

The ASEP distribution for turbine-driven pump failure
to start is lognormal with mean 3E!2 per demand
and error factor 10. The three relevant equations
from Appendix A.7.3 are

EF(p) = exp(1.645F)
mean(p) = exp(.- + ~/2)
Py = exp(- + Fz,)

where the subscript g denotes the gth quantile, and
z, is the gth quantile of the standard normal distribu-
tion.

Solving the first equation yields F=1.3997. Substi-
tution of this into the second equation yields - =
14.4862.

The percentiles are not needed yet, but the third
equation gives the median, p, 5, = exp(.) = 0.01126,
and the 95th percentile, p,os = exp(: + 1.645F) =
0.1126. (The relation of these two percentiles can
also be derived from the fact that the error factor
equals 10.)

The prior Pr(p > 1) is 6.75E 14, a very small number.
In the calculations of this section, the lognormal
distribution is truncated at 1.0. That is, integrals are
renormalized to make the integral of the density from
0 to 1 equal to exactly 1.0. If random sampling is
performed, any sampled values that are greater than
1 are discarded.

The prior and posterior densities of p are shown in
Figure 6.35. The densities were calculated using
software for numerical integration.
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As a second example, consider the logistic-normal
prior distribution having the same 50th and 95th
percentiles as the above lognormal prior. These
percentiles are 0.01126 and 0.1126. To find the
parameters of the underlying normal distribution, set
Y = In[p/(1 ! p)]. By the properties of the logistic-
normal distribution given in Appendix A.7.9, the 50th
and 95th percentiles of Y are

Yoso = IN[0.01126/(1 ¥ 0.01126)] = 14.475
Yoss = IN[0.1126/(1 1 0.1126)] = 12.064 .

Because Y has a normal( -, A) distribution, it follows
that

-=14.475
-+ 1.645F=12.064

SO F=1.466.

Monte Carlo simulation shows that the truncated-
lognormal and logistic-normal prior densities are
virtually the same, with means, medians, 5th and
95th percentiles agreeing to two significant digits. As
a consequence, the posterior distributions from the
two priors are also nearly the same, although the
means and percentiles may differ slightly in the
second significant digit.

Numerical integration was used, but BUGS could
have been used. As an illustration, the script for
using BUGS is given in Figure 6.36.

This script assigns a logistic-normal prior distribution
to p. If a lognormal prior is used instead, BUGS
returns an error message during the simulation,
presumably because it has generated a value of p
greater than 1. The script assigns Y a normal distri-
bution with mean 14.475. The second parameter is
1/P, because that is how BUGS parameterizes a
normal distribution. The entered value, 0.4653,



equals 1/1.466°. The script then gives X a bino-
mial(8, p) distribution. Finally, the line beginning “list”
contains the data, the single observed value 1 in this
example. BUGS also wants an initial value for p, but
it is willing to generate it randomly.

model

{
y ~ dnorm(-4.475, 0.4653)
p <-exp(y)/( 1+ exp(y))
x ~ dbin(p, 8)

}
list(x = 1)

Figure 6.36 Script for analyzing Example 6.7 with
BUGS.

For the present example, the difference between the
lognormal and logistic-normal priors is very small,
having no effect on the posterior. The difference
between the two priorscan beimportant if the probabil -
ity of failure is larger and/or the uncertainty is larger.
That can be the case with some human errors, with
hardware failures in unusually stressful situations, and
with recovery fromfailureif recovery ismodeled asan
event separate from the original failure. For example,
the NUREG 1150 PRA for Surry (Bertucio and Julius
1990) uses the lognormal distribution for most failure
probabilities. However, some failure probabilities are
large, considerably larger than 3E!2. In nearly al of
those cases, the PRA does not use alognormal distribu-
tion. Instead, the maximum entropy distribution is the
PRA’s distribution of choice. Other possible distribu-
tions, which were not widely known in the PRA com-
munity in 1990, would be the constrained noninforma-
tive distribution or alogistic-normal distribution.

6.3.2.6 Estimation with Fixed Number of Failures
and Random Number of Demands

Sometimesit is useful to consider arandom number of
demands, awaiting time, to achieve afixed number of
failures x. For example, if the failure probability pis
believed to change over time, only the most recent
history may represent current behavior. In such a
situation, one might decide to use only the most recent
few failures, such asx = 3, and to treat the correspond-
ing number of demands n as random. Here n is the
number of demands counted backwards from the
present to thexth failureinthepast. Earlier failuresand
demands could be used to construct aprior distribution,
but the dispersion of the prior distribution should be set
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large because the earlier eventsare not considered fully
relevant to the present.

With such waiting-time data, the likelihood is propor-
tional to

PP,

Therefore, except for the normalizing constant the
likelihood isthe same asfor binomial data. Therefore,
it works out that Bayesian analysis with an informative
prior is exactly the same whether the data are regarded
as coming from arandom count of x failuresin afixed
number of demands, n, or a random number of de-
mands, n, for afixed number of failures, x. The poste-
rior distributions are identical.

6.3.3 Modd Validation

All the methods in this section are anal ogues of meth-
ods considered for failure rates, but the details are
somewhat different. Some repetition is inevitable, but
the examples in this section are chosen to complement
the examples of Section 6.2.3, not to duplicate them.
For a more complete appreciation of the model valida-
tion techniques, both this section and Section 6.2.3
should be read.

The comments at the start of Section 6.2.3 apply
equally to this section, and must not be ignored. In
particular, an analyst who estimates parameters should
check the assumptions of the model. However, this
section contains more than will be needed on any one
analysis. The methods here are offered for possible
use, and the analyst should select the appropriate ones.

The first assumption of the binomial model, given in
Section 2.3.2, is that the probability of failure is the
same on any demand. This assumption will be exam-
ined against two possible alternative assumptions: (1)
different subsets of the data have different values of p,
but in no special order; and (2) atimetrend exists. The
second assumption of the binomial model is that the
outcome on one demand is statistically independent of
the outcome on a different demand. This will be
examined against the alternatives of common-cause
failures and of clustering in time of the failures. Fi-
nally, the consistency of the prior distribution and the
datawill be considered.

One need not worry about whether n is really constant.
If nis not constant, we may treat it as constant by
conditioning on n, as explained in Section 2.3.2.4.2.
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6.3.3.1 Poolability of Data Sources

The methods will be illustrated by data from diesel
generator failuresto start, shown in Example 6.8.

Example 6.8 EDG failures to start on demand.

Emergency diesel generator (EDG) failures to
start on demand were recorded for three kinds of
demands: unplanned demands, the tests per-
formed once per operating cycle (approximately
every 18 months), and the monthly tests. The
counts are given below.

Type of Failures to Number of
demand start demands
Unplanned 2 181
Cyclic test 17 1364
Monthly test 56 15000

Table C.1 of Grant et al. (1996) gives the data for the
first two rows, at plants reporting under Regulatory
Guide RG-1.108 during 1987-1993. The failures
were those reported in LERs. The number of failures
on monthly tests at those plants comes from the
unpublished database used for that report, and the
number of monthly demands was estimated in a very
crude way for use in this example.

6.3.3.1.1 Graphical Technique

To explore the relations between subsets of the data,
mark the subsets on one axis. For each of these subsets
of the data, plot an estimate of p and a confidence
interval for p against the other axis. Patterns such as
trends, outliers, or large scatter are then visible.

In Example 6.8, the subsets are types of demand.
The data set from each demand type is analyzed
separately, and the graph shows an estimate and a
confidence interval for each year, plotted side by
side. This is shown in Figure 6.37. The plot was
produced with a graphics package, although a hand-
drawn plot would be adequate to show the results.

The plot shows that the unplanned demands and the
cyclic tests appear to have similar values of p, but
the monthly tests appear to have a lower value.
Several reasons for the difference could be conjec-
tured: the monthly tests may be less stressful, the
failures may not all be reported in LERs, or the
estimated number of demands may be badly incor-
rect.

6-44

Pooled (75/16545) HH

Unplanned (2/181)
Cyclic (17/1364)
Monthly (56/15000) re

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

p (failures/demand) 6099029220

Figure 6.37 MLEs and 90% confidence intervals for
p, for three types of demand and for the pooled data.

Figure 6.21, which isthe corresponding plot in Section
6.2.3.1.1, has the cells (plants, in that example) ar-

ranged in order of decreasing A . Fi gure 6.37 does not
order thecellsby decreasing f , becausethe number of

cellsissmall, only three, and because the cells already
have a natural order. The analyst must decide what
order makesthemost sense and iseasiest for the user to
interpret.

The interval for the pooled data is also shown, not
because the data justify pooling, but simply as a refer-
ence for comparison. A dotted referencelineisdrawn
through the point estimate based on the pooled data. 1f
only a few data subsets need to be compared, as in
Figure 6.37, these embellishments are unnecessary.
With many subsets, however, the eye tends to get lost
without the reference line. The reference line has the
added advantage of focusing the eye on the confidence
intervals rather than the point estimates.

The graph is only a picture. Pictures like these are
useful, but cannot always be used in an easy way to
draw conclusions about differences between data
subsets. The warnings given in Section 6.2.3.1.1
deserve repetition:

C If many confidence intervals are plotted, all
based on data with the same p, afew will be far
from the others because of randomness alone.
An outlying interval does not prove that the ps
are unequal.

C This same statement istrueif other intervalsare
used, such as Bayes credible intervals based on
the noninformative prior. The issueis the ran-
dom variability of data, not the kind of interval
constructed.

C If there are few intervals, on the other hand,
intervalsthat just barely overlap can give strong
evidence for a difference in the ps.



To quantify the strength of the evidence seen in the
picture, a forma statistical procedure is given in the
next subsection. The picture givesapreview, and helps
in the interpretation of the formal statistical quantifica
tion. In the present example, if the statistical test finds
a dsatigtically significant difference between data
subsets, it is natural to then ask what kind of difference
exists. The picture showsthat p seemsto be similar for
the unplanned demands and for the cyclic tests, but
smaller for the monthly tests. In this way, the picture
provides insight, even though it does not provide a
quantitative statistical test.

6.3.3.1.2 Statistical Tests

Simple Contingency Tables (2 x J). The natural
format for the datais a*“contingency table.” Anintro-
ductory reference to this subject is Everitt (1992), and
many general statistics texts aso have a chapter on the
topic. In atwo-way table, two attributes of the events
are used to define rows and columns, and the numbers
in the table are counts. In the present example, two
attributes of any event are the type of demand and
whether it is afailure or success. One way to build a
contingency table is to let the first row show system
failures and the second row system successes. Thenlet
the columns correspond to the demand types. (Of
course, the roles of rows and columns can be reversed
if that fits better on the sheet of paper.) The table
entries are the counts of the eventsfor each cell, shown
in Table 6.12 for Example 6.8.

Table 6.12 Contingency table for Example 6.8.

Unplanned | Cyclic | Monthly || Total
Failure 2 17 56 75
Success 179| 1347| 14944( 16470
Total 181| 1364 15000|| 16545

The essence of thistableis a2 x 3 table, because the
basic data counts occupy two rows and three columns.

Therowtotals, columntotals, and grand total areshown
in the right and bottom margins. A genera, two-way
contingency table has| rowsand J columns. (Although
this discussion considersonly 2 x J tables, it does no
harmto givethe general formulas, keeping in mind that
the examples of this section have | =2.) The count in
the ithrow and jth column is denoted ny, for i any
number from1tol andj from1toJ. Thetotal countin
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row i is denoted n;, and the total count in column j is
denoted n,;. The grand total is denoted n,.,.

For example, Table 6.12 has n,; ;=56 and n,, = 179.
It has n,, = 16470 and n,, = 1364. The grand total,
n,,, equals 16545 in the example.

Let the null hypothesis be

Hy: pisthe samefor al the data subsets.
The alternative hypothesisis

H,: pisnot the same for al the data subsets.

In the example, the data subsets are the three demand
types. The analyst must investigate whether H, istrue.
The method used is to see what kind of data would be
expected when p really isthe same, and then to see how
much the observed counts differ from the expected. If
the differences are small, the counts are consistent with
thehypothesisH,. If, instead, the differencesarelarge,
the counts show strong evidence against H,,.

If Hyistrue, that is, if p isreally the same for all the
demand types, the natural estimate of p is

p=nl+/n++'

Then for column j, one would have expected N, p

failuresonaverage. Thisreasoningleadstotheformula
for the expected count in cell ij:

Qj = ni+n+j / n,.,.

In Table 6.12, for unplanned demands one would
have expected 181x(75/16545) = 0.82 failures on
average, for cyclic tests 1364x(75/16545) = 6.19
failures, and so forth.

The difference between the observed count and the
expected count for any cell isn; ! ;. There are many
cells, and therefore many ways of combining the
differencestoyield an overall number. One useful way
isto construct

X?=EE (n; ! )7e,.

X2 is called the chi-squared statistic, or sometimes the
Pearson chi-squared statistic. Note, X? as defined here
is dlightly different from the chi-squared statistic for
constant event ratein Section 6.2.3.1.2. Inthat section,
thecellshad oneindex, whereasinthissection, thecells
have two indices, and the expected counts are calcu-
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lated differently. Other than that, the statistics are the
same. Table 6.13 expands Table 6.12 to show the
quantities needed to calculate X2. The observed counts
and the expected counts havethe sametotal s, except for
roundoff.

Table 6.13 Counts, expected counts, and
contributions to X2, for Example 6.8.

Unplanned | Cyclic |Monthly || Total

Failure 2 17 56 75
0.82 6.19( 68.00
1.70] 18.92 2.12

Success 179 1347| 14944((16470
180.18|1357.80| 14932
0.01 0.09 0.01

Total 181 1364| 15000|[16545

For example, there were 2 failures on unplanned
demands. The expected number of failures on un-
planned demands, if H, is true, is 181x75/16545 =
0.82. And the contribution of that cell to X? is

(2 10.82)%0.82 =1.70 .

When H, istrue and the total count islarge, the distri-
bution of X* hasadistribution that is approximately chi-
squared with (1-1)x(J-1) degrees of freedom. In Table
6.12, the number of degreesof freedomis(211)x(311)
=2. IfX?islarge compared to the chi-squared distribu-
tion, the evidence is strong that H, is false; the larger
X2, the stronger the evidence.

Interpretation of Test Results. Based on any 2x3
contingency table, such as Table 6.12, suppose that X2
were6.4. A table of the chi-squared distribution shows
that 5.991 is the 95th percentile of the chi-squared
distribution with 2 degrees of freedom, and 7.378 isthe
97.5th percentile. After comparing X to these val ues,
an analyst would conclude that the evidence is strong
against H,, but not overwhelming. Quantitatively, the
analyst would “reject H, at the 5% significance level,
but not at the 2.5% significance level.” Thisis some-
times phrased as “the p-value is between 0.05 and
0.025." Seethebulleted listin Section 6.2.3.1.2, inthe
interpretation following Table 6.6, for other phrases
that are sometimes used.

If instead X? were 1.5, it woul d lie between the 50th and
the 60th percentiles of the chi-squared distribution, and
therefore would be in the range of values that would be
expected under H,. The analyst could say “the ob-
served counts are consistent with the hypothesisH,,” or
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“H, cannot be rejected,” or “the evidence against H, is
very weak.” Theanalyst would not concludethat H is
true, becauseit probably is not exactly true to the tenth
decimal place, but would conclude that it cannot be
rejected by the data.

In fact, in Example 6.8 X? equals 22.8, as found by
totaling the six contributions in Table 6.13. This
number is far beyond the 99.5th percentile of the chi-
squared distribution, so the evidence is overwhelm-
ing against H,. Such an analysis contributed to the
decision of Grant et al. (1999b) not to consider
monthly tests in their report.

Thisexamplewaschosentoillustratethat subsets of the
data can correspond not only to different locations or
different hardware (for example, different plants or
systems), but aso to different conditions, in this case
different types of demands. In redlity, the data analyst
should consider various kinds of subsets; in this exam-
ple, with data coming from many plants, the analyst
should consider possible between-plant differences.
The plots and chi-squared tests are exactly the same as
given above.

Thisbringsup adifficulty with the present exampl ethat
has been carefully hidden until now. ThehypothesisH,
is that all the subsets of the data have the same p. A
hidden hypothesis, never even proposed for testing, is
that within each datasubset, every demand hasthe same
p. Infact, this turns out not to be the case. Based on
only the unplanned demands and cyclic tests, Grant et
al. (1999D) report that the difference between plantsis
statistically significant — the evidence is strong that p
differs from plant to plant. This means that the above
analysis must be refined to account for possible differ-
ences between plants. Such variation is discussed in
Chapter 8 of this handbook.

Thus, the data set has two sources of variation, differ-
ences between demand types and aso differences
between plants. In such a situation, consideration of
only one variable at atime can throw off the results if
the data set is “unbalanced,” for example, if the worst
few plants also happen to have the most unplanned
demands and the fewest monthly demands. If such
between-plant differences are contaminating the EDG
datain Example 6.8, the observed difference might not
reflect anything about the nature of the demands, but
only that the plants with EDG problems were
underrepresented on the monthly tests. Example 6.9
shows hypothetical data under such a scenario.

If only the good plants are considered, or if only the
bad plants are considered, the data of Example 6.9



show no difference between unplanned demands
and tests. The estimated p is the same for un-
planned demands and for tests, 0.2 from the bad
plants’ data and 0.02 from the good plants’ data.
However, if the data from good plants and bad plants
are combined, the unplanned demands appear to
have a much higher failure probability than do the
tests, 0.07 versus 0.03. This erroneous conclusion
is a result of ignoring differences in the data, the
existence of two kinds of plants, when the data are
unbalanced because the bad plants have a much
higher percentage of unplanned demands. Such a
situation is known as Simpson’s paradox.

Example 6.9 Hypothetical unbalanced data.

Suppose that the industry consists of “bad” plants
and “good” plants. The bad plants have a
relatively high probability of failure to start, and
also have relatively many unplanned demands.
Suppose that the tests perfectly mimic unplanned
demands, so that at either kind of plant p is the
same on an unplanned demand and on a test.
Data from such an industry might be given in the
table below. The tables entries show failures/
demands.

Unplanned Tests
Bad plants 4/20=0.2 4/20=0.2
Good plants || 1/50 = 0.02 8/400 = 0.02
Totals 5/70 =0.07 | 12/420 = 0.03

In fact, this scenario cannot be greatly influencing
the data in Example 6.8, because most of the de-
mands are periodic. Therefore, every plant must
have approximately the same fraction of monthly
tests and of cyclic tests. In conclusion, although
between-plant variation must be considered, it is
hard to imagine that it affects the outcome in Exam-
ple 6.8.

As mentioned in Section 6.2.3.1.2, afull data analysis
must not stop with the calculation of ap-value. Inthe
present example, with avery large number of demands,
it may be that the statistically significant differenceis
not very important from an engineering viewpoint. In
other words, alarge data set can detect differencesin
the second decimal place — differences that are not
worth worrying about in practice.

This concern is addressed in the example by Figure
6.37, which shows that the probability of FTS is
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about 1/3 as large on monthly tests as on other
demands, at least according to the reported data.
Therefore, the difference is substantial in engineer-
ing terms, and the engineering portion of the data
analysis can investigate reasons for the difference.

Required Sample Size. The above approach isvalid
if the values of n; are“large.” If they are small, X* has
adiscretedistribution, and so cannot have achi-squared
distribution. As a rather extreme example, if n,,, the
total number of demands, were equal to four in the
framework of Example 6.8, there would only be afew
waysthat the four demands (and the number of failures,
at least zero and at most four) could be arranged among
the three demand types. Therefore X2 could only take
afew possible values.

Therefore, the user must ask how large a count is
necessary for the chi-squared approximation to be
adequate. An overly conservative rule is that al the
expected cell counts, g;, be 5.0 or larger. Despite its
conservatism, thisruleis still widely used, and cited in
the outputs of some current statistics packages. For a
2xJ table, Everitt (1992, Sec. 3.3), citing work by
Lewontin and Felsenstein (1965), states that the chi-
squared approximationisadequateif all thevaluesof g,
are 1.0 or greater, and that in “the majority of cases’ it
issufficient for the g; valuesto be 0.5 or greater. For a
2x2 table, however, it is generaly best not to use the
chi-squared approximation at all, but to use the p-value
from “Fisher’s exact two-sided test,” discussed below.

If the expected cell counts are so small that the chi-
squared approximation appears untrustworthy, the
analyst has two choices. (a) Pool some columns,
thereby combining cells and increasing the expected
cell counts. For example, in an investigation of differ-
ences between years, with few failures, it might be
necessary to combine adjacent years so that the ex-
pected number of failures in each time-bin is at least
0.5; or (b) Some statistical software packages can
compute the “exact distribution” of X? in some cases
(typicaly for smal tables). Conditional on the n,,
valuesand n,; values, thisexact distribution isthefinite
set of values that X? can possibly take, together with
their associated probabilities. If theanalystiswillingto
base the decision on this conditional distribution, the
exact distribution can be used. The commercial pack-
age StatX act performs such cal culations using modern,
fast algorithms, evenfor largetables, subject only tothe
memory availableinthemachine. Inthe special case of
a 2x2 contingency table, many software packages
compute this p-value, caling it the p-value from
“Fisher’sexact two-sided test.” In genera, the p-value
from Fisher's exact test is preferable to the p-value
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from the chi-squared approximation, and should be
used whenever the software produces it. This, and
other considerations for a 2x2 table, are discussed by
Everitt (1992) and Atwood (1994).

In Table 6.13, the smallest expected count is e;; =
0.82. All the other expected counts are larger than
1.0. This indicates that the sample size is large
enough.

6.3.3.2 NoTimeTrend

This section uses the unplanned HPCI demands from
Example 6.5, with the failures indicated. To make a
data set with amoderate number of failures, all types of
failures are counted together, including failure to start,
failure to run, failure of the injection valve to reopen
after operating successfully earlier in the mission, and
unavailability because of maintenance. For the exam-
ple, no credit istaken for failures that were recovered.
The data are given as Example 6.10.

Example 6.10 Dates of HPCI failures and
unplanned demands, 1987-1993.

The HPCI demands of Example 6.5 are listed here
with an asterisk marking demands on which some
kind of failure occurred. The demands dates are
given in columns, in format MM/DD/YY.

01/05/87* 08/03/87* 03/05/89  08/16/90* 08/25/91
01/07/87 08/16/87 03/25/89  08/19/90  09/11/91
01/26/87  08/29/87 08/26/89  09/02/90  12/17/91
02/18/87 01/10/88 09/03/89  09/27/90  02/02/92
02/24/87  04/30/88 11/05/89* 10/12/90  06/25/92
03/11/87* 05/27/88 11/25/89  10/17/90  08/27/92
04/03/87 08/05/88 12/20/89  11/26/90  09/30/92
04/16/87 08/25/88 01/12/90* 01/18/91* 10/15/92
04/22/87 08/26/88 01/28/90  01/25/91  11/18/92
07/23/87  09/04/88* 03/19/90* 02/27/91  04/20/93
07/26/87 11/01/88 03/19/90  04/23/91  07/30/93
07/30/87  11/16/88* 06/20/90  07/18/91*

08/03/87* 12/17/88 07/27/90  07/31/91

6.3.3.2.1 Graphical Techniques

Just as elsewhere in this chapter, the time axis can be
divided into bins, and the data can be analyzed sepa-
rately for each bin and compared graphically.

For Example 6.10, defining the bins to be years
leads to Table 6.14. This leads to a plot similar to
Figures 6.21 and 6.22, shown in Figure 6.38. The
plot with the example data shows no evidence of a
trend.
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Table 6.14 HPCI failures on demand, by year.

Calendar year Failures Demands
1987 4 16
1988 2 10
1989 1 7
1990 3 13
1991 2
1992 0
1993 0
0.9r - _
0.8} ¢ MLE and 90% conf. interval
2 07
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S 05)
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Figure 6.38 Point and interval estimates of p, each
based on one year’s data.

A plot that does not require a choice of how to con-
struct bins is given in Figure 6.39, the analogue of
Figure 6.23. It can be constructed when the demands
can be ordered sequentially, asisthe case for Example
6.10. Inthis plot, the cumulative number of failuresis
plotted against the cumulative number of demands. To
help the eye judge curvature, a straight line is drawn,
connecting the origin with the dot at the upper right.

12 +

10

Cumulative failures
(o))
T

0 'f,\/\’\\\HH\HH\HHHH\HH\HHHHH\HHHH\HH\HH\HH
0O 5 10 15 20 25 30 35 40 45 50 55 60 65
Cumulative demands GCo9 0292 22

Figure 6.39 Cumulative number of failures versus
cumulative number of demands.




The slope of any part of the graph is the vertical dis-
tance divided by the horizontal distance, )y/)x. Inthe
present figure the horizontal distance is the number of
demandsthat have occurred, and thevertical distanceis
the corresponding number of failures. Therefore,

dope = (number of failures)/(number of demands) ,

so the dope is a visual estimator of p. A roughly
constant lope, that is, aroughly straight line, indicates
aconstant p. A changing slope indicates changesin p.

In Figure 6.39, the slope is relatively constant,
indicating that p does not seem to change with time.
This agrees with Figure 6.38. It is not clear whether
the slight departure from the diagonal line in the right
half of the figure is more than can be attributed to
random variation. Such questions must be ad-
dressed by statistical tests, given below.

Thedetails of the diagonal line probably do not matter.
The line shown is the maximum likelihood estimate of
the expected height of the plot at any horizontal point,
assuming constant p. Other lines, dightly different,
could aso bejustified.

6.3.3.2.2 Statistical Testsfor aTrend inp

In this section, the null hypothesis remains

H,: pisthe samefor al the data subsets.

but the alternative is now

H,: piseither increasing or decreasing over time.

The Chi-Squared Test. Thisisthe sametest asgiven
in Section 6.3.3.1.2, except now the data subsets are
years or similar bins of time.

The data of Table 6.14 can be written as a 2x7
contingency table. The smallest expected cell count
corresponds to failures in 1993, with the expected
count = 2x12/63 = 0.4. This is too small to justify
calculating a p-value from the chi-squared distribu-
tion. The problem can be remedied by pooling the
two adjacent years with the smallest number of
demands, 1992 and 1993. (Note, the decision of
which subsets to pool is based on the numbers of
demands only, not on whether or not those demands
resulted in failures. Pooling based on demand
counts is legitimate. Pooling based on the failure
counts is not.)

When this 2 x 6 contingency is analyzed by the chi-
squared test, the p-value is 0.77, indicating no
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evidence at all of differences between years. This is
no surprise.

The Wilcoxon-Mann-Whitney Test. This test is
similar in spirit to the Laplacetest for atrendin & The
null hypothesisisthat p is the same for al demands.
Suppose that the individual demands are in a known
sequence. Against the alternative hypothesis that the
failures tend to occur more at one end of the sequence
— that is, p is either an increasing or a decreasing
function of the sequence number — use the Wilcoxon-
Mann-Whitney test, described in texts that cover
nonparametric statistics. Two good sourcesof standard
nonparametric methods are Conover (1999), and
Hollander and Wolfe (1999). Hollander and Wolfecal
this test the Wilcoxon rank sum test.

Thetest isbased on the sum of the ranks of thefailures.
For example, in the sequence of failures and successes

failure, success, failure, failure, success,

the threefailures haveranks 1, 3, and 4, and the sum of
their ranksis 8. LetW denote the sum of the ranks of x
failuresin ntrials. If xand n 7 x are both large and if
the probability of a failure is the same for the entire
sequence, W is approximately normal with mean -, =
x(n+1)/2 and variance A, = x(n1x)(n+1)/12. 1fZ=(W
I - \)/FAy isin either tail of the distribution, the null
hypothesis should be rejected. If x or n 7 x is small,
statistics books give tables, or statistical computer
packages calculate the exact tail probability.

The data of Example 6.10 show 12 failures in 63
demands. The first failure was on the first demand
(01/05/87), so that failure has rank 1. The next was
on the sixth demand, so that failure has rank 6. Two
demands occurred on 03/19/90, the 36th and 37th
demands. One of the two demands resulted in
failure, so that failure was assigned rank 36.5, as is
usual in case of ties. The sum of the ranks of the
failures is 321.5, and Z can be calculated to equal
11.09. This is the 13.8th percentile of the normal
distribution. Because Z is not in either tail, H, is not
rejected.

6.3.3.3 Independence of Outcomes

The second assumption for binomia data is that the
outcomes of different demands be independent — a
successor failure on one demand does not influencethe
probability of failure on a subsequent demand.

QOutcomes can be dependent in many ways, and some of
them must be addressed by careful thinking rather than
by statistical data analysis. The anayst or the study
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team should consider possible common-cause mecha-
nisms, and examine the data to see if many common-
causefailuresoccurred. If common-causefailuresform
a noticeable fraction of al the failures, the analyst
should probably divide theindependent failuresand the
common-cause failures into separate data sets, and
separately estimate the probabilities of each kind of
failure.

The rest of this section is less important on the first
reading than other sections. Some readers may wish to
skip directly to Section 6.3.3.4.

If demands occur in sequence, it is natural to consider
serial dependence, in which the occurrence of afailure
on onedemand influencesthe probability of afailureon
the next demand. Some people believe that hits in
baseball occur this way, that a slump or streak can
persist because of a batter’s attitude, which is influ-
enced by how successful he has been recently. Inthe
context of hardware failures, suppose that failures are
sometimesdiagnosed incorrectly, and thereforerepaired
incorrectly. Immediately after any failure, the probabil -
ity of failure on the next demand is higher, because the
first failure cause may not have beentruly corrected. In
such a case, the failures would tend to cluster, rather
than being uniformly scattered among the successes. A
cumulative plot, such as that in Figure 6.39, can be
inspected for such clusters.

If the question of independence is restricted to succes-
sive outcomes— outcomei ' 1 versus outcome i — the
data can be analyzed by a 2x2 contingency table. Let
y; bethe outcome on demand i, either successor failure.
Let x; be the outcome on demand i ! 1. The possible
values of successive outcomes (x, y,) are (S, S), (S, F),
(F,9),and (F, F).

To put thisin more familiar language, let p denote the
probability of a failure, and consider two kinds of
demands, those when the previous outcome (x) was a
failure and those when the previous outcome was a
success. The null hypothesisis

Hy: pisthe same on both kinds of demands .

Perform the usual chi-squared test of H, based on a
contingency table.

Example 6.10 results in the contingency table shown
in Table 6.15. Although the chi-squared approx-
imation should be acceptable, it is preferable to use
Fisher's exact test for a 2x2 table. The p-value
reported by SAS for Fisher’s exact testis 0.67. This
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large p-value shows that the data are very consistent
with the hypothesis of independence of successive
outcomes. Because the data come from the entire
industry, independence is entirely reasonable.

Table 6.15 Contingency table for successive
outcomes in Example 6.10.

x=F X=S Total
y=F 1 10 11
y=S 11 40 51
Total 12 50 62

6.3.3.4 Consistency of Data and Prior

If the prior distribution has mean E;,(p), but the
observed data show x/n very different from the prior
mean, the analyst must ask if the data and the prior are
inconsistent, or if the prior distribution was misin-
formed. Theinvestigation is similar to that in Section
6.2.3.5.

Suppose first that x/n is in the right tail of the prior
distribution. Therelevant quantity isthe prior probabil-
ity of observing x or fewer events. Thisis

Pr(X 2 x)=[Pr(X 2 xp) fprior (p)dp (6.17)
where
mxzmm:é(gwa—mmﬁ (6.18)

If the prior distribution is beta( ", $), it can be shown
that Equation 6.17 eguals

Pr(X >x)
_ ”(ﬂrw+mrw+m«)rw+m
S TT@ ) Tersen

where " (9) is the gamma function, a generalization of
the factorial function as described in Appendix A.7.6.
The name of this distribution is beta-binomial. This
probability can be evaluated with the aid of software.
If the prior probability is any distribution other than a
beta distribution, Equation 6.17 does not have a direct
analytical expression.



Just asin Sec. 6.2.3.5, one method of approximating the
integral in Equation 6.17 is by Monte Carlo sampling.
Generate alarge number of values of p from the prior
distribution. For each value of p, let y be the value of
Equation 6.18, which can be calculated directly. The
average of the y values is an approximation of the
integral in Equation 6.17. Another method of approxi-
mating the Equation 6.17 is by numerical integration.

If the probability given by Equation 6.17 is small, the
observed data are not consistent with the prior belief —
the prior belief mistakenly expected pto be smaller than
it apparently is.

Similarly, if xnisintheleft tail of theprior distribution
of the prior distribution, the relevant quantity is the
prior Pr( X # x). It isthe analogue of Equation 6.17
with thelimits of the summationin Equation 6.18 going
from O to x. If that probability is small, the prior
distribution mistakenly expected p to be larger than it
apparently is.

Again consider Example 6.7, one AFW failure to start
in eight demands, and consider the industry prior,
beta(4.2, 153.1). One easy approach is Monte Carlo
simulation. Therefore, values of p were generated
from the beta distribution, using the technique
mentioned at the end of Section 6.3.2.5.3. That is,
y, was generated from a gamma(4.2, 1) distribution,
y, was generated from a gamma(153.1, 1) distribu-
tion, and p was setto y,/(y; +V,).

The industry-prior mean of p is 0.027, Because the
observed number of failures, one, is larger than the
prior expected number, 8x0.027 = 0.21, we ask
whether such a large failure count is consistent with
the prior. The probability in question is Pr(X $ 1).
For each randomly generated p, Pr(X $ 1 | p) was
found, equalto 1 ' Pr(X=0|p)=11 (1! p)’.. The
average of these probabilities, calculated for 100,000
random values of p, was 0.192, with a standard error
of 0.0003. This means that the true probability is
0.192, with negligible random error. Because this
probability is not small, the data appear consistent
with the prior distribution.

6.4 Failureto Change State:
Standby Failure

Asexplained in Sec. 2.3.3, this type of failure is mod-
eled as a failure condition that occurs at an unknown
time between the most recent previousinspection, test,
or demand and the present one.

Each demand correspondsto astandby time. The only
thing that can be observed is whether the system is
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failed or not at the end of the standby period. From
Equation 2.3, the probability that the systemisfailed at
timetis

p=11¢®. (6.19)
Supposethat x failures are observed on ndemands. For
any one of the failures, denote the corresponding
standby timeby t, i =1, ..., x. For any one of the
successes, denote the corresponding standby time by s,
j =1, ..., n Ix All these numbers are observable in
principle. Therefore, the likelihood is proportiona to

ﬁx e ] (1-e). (6.20)
=1

X
i=1

This likelihood will be treated in three distinct ways
below. First, asimple specia case will be considered.
Second, an approximation of the likelihood will be
developed and used. Finally, a way to use the exact
likelihood in Bayesian analysis will be given.

First, consider asimple specia case, when all the stand-
by times are equal, say, to some number t. This can
happen if al the demands are test demands at equally
spaced intervals. Inthis case, the probability of failure
on demand is the same for each demand, the quantity p
given by Equation 6.19. Therefore, the number of
failures in n demands is binomial(n, p). The analysis
methods of Section 6.3 can all be used — Bayesian or
frequentist estimation of p and al the methods of model
validation. At the very end of the analysis, the conclu-
sionsintermsof p should betranslated into conclusions
in terms of &, by solving Equation 6.19 for

8=1n(1 ! p)t .

This equation for & can be approximated as
8. plt

if pissmal (say, <0.1).

Thislast equation showsthat the MLE of &is approxi-
mated by

p/t=x/nt .

Here x is the number of failures and nt is the total
standby time. Thistotal standby timeis approximately
the total calendar time, so asimple estimate of &isthe
number of failures divided by the total calendar time.
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Theabovesimpleapproach assumesthat all the standby
timesareequal. If the standby timesare approximately
equal, or nearly all equal, itisvery appealing to usethe
above technique, calling it an adequate approximation.
If, instead, the standby times differ greatly, one of the
two approaches given below can beused. Thefirst uses
an approximation of thelikelihood, and the secondisan
exact Bayesian method.

An approximation of the exact likelihood given in
Equation 6.20 can be developed as follows. 1t iswell
known that

1'exp(1&) - & .

Thisisthefirst order Taylor-series approximation, and
isvalid when &; issmall. The error ison the order of
(&)% A second-order approximation is less well
known, but it is not hard to show that

11 exp(1&) - Sexp(1 &/2) .

That is, the two quantities on the left and right of the .
have the same second order Taylor expansions, and
they differ only by atermof order (&;)%. Therefore, the
likelihood in Equation 6.20 is approximately equal to

o 5 i [T o519

Thisis proportional to

e'fg

:sj + [iﬁlti /2] .

Compare this approximation of the likelihood with
Equation 6.1, and see that the approximate likelihood
here is proportiona to the likelihood of x Poisson
eventsin time t, where t equals the total standby time
for the successes plus half the standby time for the
failures.

t=

Therefore, al thelikelihood-based methodsfor Poisson
data are approximately valid, treating the data as
showing x failures in time t. The likelihood-based
methods consist of maximum-likelihood estimationand
al the Bayesian techniques.
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The graphica methods for model validation from
Section 6.2 remain valid, because they give qualitative
indications and do not require a rigorous justification.
The above argument also suggests that the chi-squared
test of poolability in Section 6.2 can be used with the
present data, because the chi-squared test is only an
approximation in any case. However, no simulations
to confirmthis have been carried out for this handbook.

Finally, wegiveadifferent approach, an exact Bayesian
method that can be used if the standby times have been
recorded, based on Equation 6.20. Figure 6.40 givesa
portion of a script for analyzing this type of data with
BUGS, based on the exact likelihood. (See Figures
6.16 and 6.36 for similar scriptsin other situations.)

model

{ for (iin1:n) {
p[i] <- 1 - exp(-lambda*t[i])
X[i] ~ dbern(p[i])

}
lambda ~ dgamma(0.5, 0.00001)
}

Figure 6.40 Script for analyzing standby failure data
exactly.

In this script, p, is defined as 1 1 exp(1&;). The
random variable X; isassigned aBer noulli(p,) distribu-
tion. Thismeansthat X; equals 1 with probability p; and
equals O with probability 1 I p;,. It isthe same as a
binomial distribution withn= 1. Finally, isassigned
aprior distribution. In Figure 6.40, the prior distribu-
tionischosen to be closeto the Jeffreys noninformative
prior for Poisson data, but any proper prior distribution
could be used. BUGSrequiresaproper distribution, so
the second parameter of the gamma distribution cannot
be exactly zero. An additional required portion of the
script, giving the data, is not shown in Figure 6.40.

6.5 Failuresto Run during
Mission
6.5.1 Estimatesand Tests

Thistype of data can be analyzed using amost exactly
the sametoolsasfor event ratesin Section 6.2. Certain
tools carry over exactly, and others are approximately
correct.



6.5.1.1 Likelihood-Based M ethods: MLEsand
Bayesian M ethods

Suppose that n systems are run for their missions.
(Equivalently, we might assume that a systemisrunfor
nmissions.) Supposethat x of the runsresult in failure,
at timest,, ..., t,. Theremaining n ! X runs are com-
pleted successfully, and the systems are turned off at
timess,, ..., S, Observe the notation: t for a failure
time and s for a completed mission time. The likeli-
hood is the product of the densities of times to failure,
for the systems that fail, times the probability of no
failure, for the systemsthat did not fail:

I1 f(ti)];[ Pr (no failure by s)).

i=1 j=1

(As elsawhere, the capital pi denotes a product, analo-
gous to a capital sigma for a sum.) Under the model
introduced in Section 2.4, thefailurerateis assumed to
be constant, &, the same for al the systems. Therefore,
the time to failure has an exponential distribution. As
stated in Appendix A.7.4, the density of an exponen-
tial (&) distribution is

f(t) = 8e'®

and the cumulative distribution function (c.d.f.) is
Fity=11 2.

In particular, the probability of no failure by time sis

11 F(s). Substitution of these valuesinto the genera
expression for the likelihood resultsin

il;xll[/i exp(- 1t )]r]_l:!;exp(— 7s))

oy exp{- ﬂ@ti ' ZSJ]]

j=1
= A exp(- At)
wheret is defined as Et; + Es, the total running time.

Except for anormalizer that does not depend on &, this
is the Poisson probability of x failuresin timet,

exp(1 &) 8TIx! .

Recall that Section 6.2 dealt with x failuresin time t.
Therefore, any statistical analysis that requires only a
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multiple of thelikelihood isthe samein Section 6.2 and
here. In particular, the maximum likelihood estimate of
8gisx/t. The gamma distributions form the family of
conjugate priors, and any Bayesian analysisis carried
out the same way for the data here, and the data in
Section 6.2.

The subtle difference is that Et; is randomly generated
here, sotisrandomly generated (although if most of the
systems do not fail during their missions, the random
portion of t is relatively small). Also, the likelihood
hereis not a probability, but acombination of densities
and probabilities, explaining the missing normalizer in
the likelihood. These differences between this section
and Section 6.2 result in small differencesin the confi-
dence intervals and the tests for poolability.

6.5.1.2 Confidence Intervals

Engelhardt (1995) recommends the following method
when all themission timesequal thesamevalue, s. The
probability of a system failure beforetimesis

p=F()=1"exp(18). (6.21)

Based onxfailuresinntrials, find aconfidenceinterval
for p, using the methods of Sec. 6.3. Trandatethisinto
aconfidence interval for 8, using Equation 6.21

Eort, 005 = 1N(L Y Peory 0,05)/S
Eort, 095 = 1N(L T Peory 0.05)/S -

This method does not use al of the information in the
data, because it ignores the times of any failures, using
only thefact that therewasafailure at sometimebefore
the missiontime s. However, if failures are few, the
loss of information is small.

Similarly, to perform tests when all the mission times
are the same, for example to test whether two data
subsets can be pooled, one can work with p, defined by
Equation 6.19, and use the tests given in Section 6.3.
The tranglation to & needs to be made only at the very
end of the analysis.

When the mission times are not all equal, no exact
confidence interval method exists. However, Bayesian
intervals can till be found, and are suggested.

6.5.1.3 Jeffreys Noninformative Prior
The Jeffreysprior can beworked out exactly, following

the process given in Appendix B.5.3.1. If &(typica
mission time) is small (say, < 0.1), then the Jeffreys
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prior is approximately the same as in Section 6.2, an
improper distribution proportional to 82,

6.5.1.4 Testsfor Poolability

The above arguments suggest that it is adequate to
ignore the random element of t, and use the methods of
Sec. 6.2, when estimating 8 For testing whether
subsets of the data can be pooled, the same arguments
suggest that the chi-squared test of Sec. 6.2 can be used.
The chi-squared distribution is only an asymptotic
approximation in any case, and can probably be used
even when t has a small amount of randomness, al-
though no simulationsto confirm thishave been carried
out for this handbook.

Therest of this section considers a diagnostic plot that
was not introduced earlier.

6.5.2 Hazard Function Plot

One plot that is especially useful for failures to runis
thehazard functionplot. Itisusedtoinvestigate wheth-
er 8isconstant during theentire mission. Asexplained
in Appendix A.4.4 for a nonrepairable system, &)t is
the approximate probability that the system will fail
during atimeinterval of length )t, given that it has not
yet failed. The precise name for &isthe hazard rate,
or hazard function, athough it is often also called the
failurerate.

Suppose that the system must run for some mission
time, and the data value for that mission is either the
mission time, if the system runs to the end without
failing, or thefailuretime, if the system fails during the
mission. The outcome, failure or success, is also
recorded. Thetotal data set consists of the datafrom a
number of missions.

Now consider the possibility that & is not constant.
Therefore, wewriteit as 8(t). An estimate of 8(t))t at
sometimet isthe number of systemsthat failed during
theinterval (t, t + )t) divided by the number of systems
that had not yet failed by time t. This leads to the
following rather unsatisfactory estimate of &(t). Divide
the missiontimeinto small intervals, each of length )t,
with the intervals so short that hardly any of them
contain more than one failuretime. In aninterval with
no recorded failures, estimate &(t) by 0. Inaninterva
(t, t + )t) with one failure, estimate 8(t))t by 1/n,
wheren, isthenumber of systemsthat had not yet failed
by time t. Therefore, the estimate of &t) there is
1/(n)t). For intervals with more than one failure, set
the numerator to the number of failures.
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This estimate consists of a number of spikes, at times
when failures were observed. Because it is so un-
smooth, this estimate is not at all attractive. However,
it motivates a very simple estimate of the cumulative
hazard function, defined as

A = [Au)du .

In this definition, the argument t of 7 isthe upper limit
of integration. Here 7 and 8 are related in the same
way that ac.d.f. and adensity arerelated. In particular,
&4t) isthe derivative of 7(t).

A natural and simple estimate of 7(t) isastep function,
whichisflat except at timeswhen failuresoccurred. At
a time t when a failure occurred, the estimate of 7
jumps by 1/n,, where n, is defined, just as above, asthe
number of systems that had not yet failed by timet. If
exactly simultaneous failures occur, for example
because of roundoff in reporting the failure times, the
estimate of 7 jumps by the number of failures divided
by n.. Thisplotisdueto Nelson (1982). Thefull name
of the plot is the cumulative hazard function plot.
This technique is illustrated with the following exam-

ple.

Example 6.11 EDG failure-to-run times.

Grant et al. (1999b) state that 23 failures to run
occurred during the EDG tests performed approxi-
mately once every 18 months. All these failures
were reported by plants subject to Regulatory
Guide RG1.108, and there were approximately
665 such tests performed at these plants during
the study period. These tests require the EDG to
run for 24 hours. Of the 23 failure reports, 19
reported the times to failure. The 19 reported
times are given below, in hours.

0.17 0.33 2.67 6.00 11.50
0.23 0.35 3.00 8.00 13.00
0.25 0.93 4.00 10.00 17.78
0.33 1.18 5.50 10.00

Grant et al. (1999b) assume that the lack of a re-
ported time is statistically independent of the time at
failure, so that the 19 reported times are representa-
tive of all 23 times.

There were approximately 665 such tests. There-
fore, the cumulative hazard plot jumps by 1/665 at
time 0.17 hours, by 1/664 at time 0.23 hours, and so
forth, until it jumps by 1/647 at time 17.78. 1t is
important that the duration of all the tests is known to



be 24 hours. This fact guarantees that none of the
EDGs drop out early, so that after 18 failures 647
EDGs are still running. Actually, this is only approxi-
mate, because it ignores the four failures with unre-
ported times.

The jumps are almost the same height, because
1/665 equals 1/647 to two significant digits. There-
fore Grant et al. (1999b) plot the cumulative number
of failures (a jump of 1 at each failure), instead of the
estimated cumulative hazard function. The two
graphs make the same visual impression, and the
cumulative failure plot was easier to explain in the
report. This plot is shown here, as Figure 6.41.

20 ¢
15 |

10 |

Cumulative failures

L T S

0 0 4 8 12 16 20 24

Failure time (hours) GC99 0292 23

Figure 6.41 Plot of cumulative failure count, a close

approximation of plot of cumulative hazard function
when only a small fraction of the systems fail.

The cumulative hazard plot would differ only in that
the vertical scale would be different, and the jumps
would not be exactly the same size, though the
jumps would be almost the same size in this exam-

ple.

As explained in introductory calculus courses, when a
function is graphed as a curve, the derivative of the
function isthe dope of the curve. Therefore, the slope
of a cumulative hazard plot near time t estimates the
derivative of 7 at timet. But the derivative of 7(t) is
8(t). Therefore, a constant slope indicates constant
&(t), and a changing dope indicates changing &(t).

Grant et al. (1999b) note that for times less than
about one half hour the slope is approximately
constant, and steep. It is again constant, but less
steep, from about 1/2 hour until about 14 hours, and
it is smaller yet after 14 hours. Therefore, Grant et
al. (1999b) estimate three values for 8, correspond-
ing to these three time periods. They comment that
the early, middle, and late failures seem to corre-
spond in part to different failure mechanisms.
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6.6 Recovery Timesand Other
Random Duration Times

The previous analyses have al involved a single
parameter, & or p. The analysis of duration times is
different because now adistribution must be estimated,
not just a single parameter.

A distribution can be estimated in many ways. If the
form of thedistribution isassumed, such asexponential
or lognormal, it is enough to estimate one or two
parameters; the parameter or parameters determine the
distribution. If the form of the distribution is not
assumed, the distribution can be estimated nonparamet-
ricaly, or characteristics of the distribution, such as
moments or percentiles, can be estimated.

To test whether data sets can be combined (pooled),
both parametric tests and nonparametric tests exist.
The parametric teststypically test whether the means or
variances of two distributions are equal, when the
distributionshave an assumed form. Themost common
nonparametric tests test equality of the distributions
against the alternative that one distribution is shifted
sideways from the other.

This section is long, because so many distribution
model s can be assumed and because the model assump-
tions can be violated in so many ways. A brief outline
of the section is as follows:

6.6.1 Characterization of a single distribution
Estimation of moments, percentiles, c.d.f.s
Fitting of four parametric models (frequentist
and Bayesian parameter estimates)

6.6.2 Model validation (graphs and hypothesis tests)
Poolability, trend
Goodnessof fit to assumed parametric models
Consistency of datawith prior for Bayesian
parameter estimates

6.6.3 Nonparametric density estimation

Many of the methods will beillustrated using the data
of Example 6.12, taken from Atwood et al. (1998).

This example shows the times when power could
have been recovered, for plant-centered LOSP
events, that is, for events not caused by grid prob-
lems or by widespread severe weather. (Real life is
complicated: sometimes a plant does not restore
power as quickly as it could, and the event report
states when power was actually restored, and usu-
ally also when it could have been restored. The
times given by Atwood et al. (1998) as “recovery
times” show when power could have been restored,
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if that time was reported and different from the actual
recovery time.) Discussions of this example will use
the terms recovery time and duration interchange-
ably. Momentary events (duration less than two
minutes) and events with no reported duration have
been excluded. For common-cause events that
affected multiple units at a site, the average recovery
time is used.

Example 6.12 LOSP recovery times.

Atwood et al. (1998) report 115 times of recovery of
lost offsite power. The data are categorized into
three possible values for plant status: T, S, and P,
with meanings explained in the table below. The
durations in minutes and the dates (MM/DD/YY) are
shown.

P: Plant remained at power throughout LOSP event

(8 times)
6 03/01/80 113 01/18/96 385 04/11/94
45 07/25/85 147 06/03/80 1138 01/03/89
65 07/16/88 355 11/12/90

S: Plant was shut down before and during LOSP event

(62 times)

2 06/04/84 14 11/16/84 60 06/22/91
2 08/17/87 14 02/01/81 60 06/16/89
2 06/29/89 15 04/27/81 62 07/15/80
2 05/21/94 15 12/19/84 67 03/13/91
3 06/26/93 15 10/12/93 73 08/28/85
3 10/22/84 17 04/26/83 77 03/29/92
3.511/21/85 17 10/14/87 97 01/08/84
4 04/22/80 20 03/23/92 120 06/05/84
4 04/04/87 22 08/24/84 120 01/16/81
4 10/20/91 24 07/29/88 127 01/20/96
5 05/03/84 24 07/29/88 132 02/27/95
8 06/24/88 29 03/20/91 136 04/08/93
9 12/26/88 29 09/16/87 140 03/20/90
10 08/01/84 29 05/14/89 155 03/05/87
10 04/28/92 35 04/02/92 163 10/08/83
10 12/23/81 37 03/21/87 240 11/14/83
11 10/04/83 37 05/19/93 240 03/07/91
11 07/24/91 37 07/09/90 335 04/29/85
12 06/22/93 43 05/07/85 917 10/21/95
12 07/19/86 53 09/11/87 1675 11/18/94
14 02/26/90 59 10/16/87

T: Plant tripped because of LOSP event

(45 times)

2 02/28/84 20 08/21/84 90 02/12/84

4 11/21/85 20 07/16/84 90 03/29/89
4 11/17/87 20 06/27/91 90 06/17/89
5 08/16/85 24 06/15/91 95 12/31/92
6 05/03/92 25 10/03/85 95 12/31/92
10 09/10/93 29 06/22/82 95 10/16/88
10 10/12/93 38 07/17/88 96 12/27/93
11 07/26/84 40 02/11/91 100 01/28/86
13 10/07/85 45 01/16/90 106 06/03/80
14 08/13/88 45 03/25/89 118 07/23/87
15 02/16/84 46 01/01/86 118 07/23/87
15 09/14/93 57 10/19/92 277 04/23/91
19 10/25/88 60 03/21/91 330 02/06/96
20 12/12/85 60 10/22/85 388 07/14/87
20 03/27/92 62 07/15/80 454 08/22/92
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The group P exists because some plants are permit-
ted to remain at power during certain LOSP events.

Throughout thissection, therandom variableisdenoted
by T, because typically the random quantity is a dura-
tion time, such as time to recovery of the system.
Several examples were given in Section 2.5.1: time
until restoration of offsite power, duration of arepair
time, and others. Let F denote the c.d.f. of T, F(t) =
Pr(T #t). Itisassumed that n timeswill be observed,
T, Ty ..., T,. The assumptions of Section 2.5.2 are
repeated here.

C TheT, sareindependent,
C EachT, hasthec.df. F(t).

A data set satisfying these assumptions is caled a
random sample from the distribution. Sometimes the
T, s are caled independent identically distributed
(i.i.d.). Thetermrandom sample can refer either to the
random variables (T,s) or to the observed values, t,, t,,
..., t.. The data are used to estimate properties of the
distribution. This can also be described as estimating
properties of the population, where the population is
the infinite set of values that could be randomly gener-
ated from the distribution.

6.6.1 Characterization of Distribution
6.6.1.1 Nonparametric Description

The tools in this subsection are called nonparametric
because they do not require any assumption about the
form of the distribution. For example, the distribution
is not assumed to be lognormal, exponential, or any
other particular form.

6.6.1.1.1 Moments
To egtimate the population mean - or a population

variance A, two simple estimators are the sample
mean, defined as

f:

Sk

n
T
i=1

and the sample variance, defined as
1 ¢ _

Sf=——) (T-T)Y.
2 ()

The sample mean and sampl e variance are known to be
unbiased for the popul ation mean and variance, respec-



tively. Inother words, E(T) = - and E(S%) = F%. These
statements are true regardless of the distribution F,
requiring only the assumptions of a random sample.
The sample standard deviation, S is the square root
of the samplevariance. When defining S* some authors
use n in the denominator instead of n ! 1, with corre-
sponding adjustment of formulasthat involve S, but this
handbook uses the above definition consistently, both
hereand in Appendix B. Inapplicationswith computer
packages, note which definition is used and make any
necessary adjustments to formulas in this handbook.

These are al-purpose estimators, but they are not the
only possible estimators. For example, the variance of
an exponential distribution is the square of the mean.
Therefore, a good estimator of the variance would be
the square of the estimator of the mean. This estimator
relies heavily on the assumption of exponentiadlity,
whereas the above estimators make no such assump-
tions. General principlesof estimation are discussed in
Appendix B.4.1.

6.6.1.1.2 Percentiles

To estimate percentiles of a distribution, it is useful to
put the datain ascending order from the smallest to the
largest observation. The recovery times in Exam-
ple 6.12 have been arranged this way. The variables
obtained by ordering the random sample are called the
order statistics, and are denoted by T, # T, # M #
T Theobserved valuesarewrittent , #t, # M #1,.
Some important estimates based on the order statistics
are the sample median, other sample percentiles, and
the samplerange. The general definition of the 100qgth
sample percentile, where 0 < g < 1, isanumber t such
that the fraction of observationsthat are# tisat least g
and the fraction of observationsthat are $ tis at least
11q.

For example, the samplemedian isdefined to bet such
that at least half (because q = 0.5) of the observations
are#tand at least half (because1 1 q=0.5) are $ t.
This boils down to the following. If n is odd, the
sample medianisthe “middle” order statistic, t,, with
m=(n+ 1)/2. If niseven, with m = n/2, thereisno
unique “middle” order statistic. Any number between
the two middle order statistics, t, # t # t,,.,), could be
used. However, nearly everyoneusesthe average of the
two middle order statistics (t;, + t.n.y))/2 as “the’
sample median.

Theother sample percentilesare defined similarly, with
some averaging of two order statistics if necessary.
Note that the sample 90th percentileist,, if n < 10, the
sample 95th percentileist,, if n <20, and so forth.
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Order statistics that are sometimes used are: the lower
and upper quartile, defined as the 25th and 75th
percentiles; percentilesthat include most of thedistribu-
tion, such as the 5th and 95th percentiles; and the
extremes, t, and t,. Theinterquartilerangeisthe
upper quartile minus the lower quartile. The sample
rangeisthe difference between thelargest and smallest
ordered observations, t, ! t,. Be careful with inter-
pretation. Asdata continueto be collected, the sample
interquartilerange stabilizesat theinterquartilerange of
the distribution, but the sample range does not stabilize
at all — it just grows every time a new t is observed
that is outside the former observations.

The sample median has the advantage of not being
strongly influenced by extreme observations. The
sample mean, on the other hand, can be strongly influ-
enced by even one extreme data value. The sample
variance is even more sensitive to extreme values,
because it is based on squared terms. Therefore, the
sampl e standard deviation, defined asthe square root of
the sample variance, is also sengitive to extreme terms.
Other measures of dispersion, such as the interquartile
range, are much less sensitive to extreme values. In
general, sample percentiles are much less sensitive to
extreme observations than are sample moments.

The recovery times of Example 6.12 have sample
moments and percentiles given in Table 6.16.

Table 6.16  Statistics based on the recovery
times (minutes) of Example 6.12.
P S T
n 8 62 45
Stand. deviation 3732 | 2414 99.9
95th %ile 1138 240 330
75th %ile 370 73 95
(upper quartile)
Mean 281.75 92.3 73.4
50th %ile 130 24 40
(median)
25th %ile 55 10 15
(lower quartile)
5th %ile 6 2 4

For the P group, the sample median is taken as the
average of the two middle numbers. Even though
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the S group has an even number of observations, its
sample median is unique, because tz, and tg,
happen to be equal. The T group has an odd num-
ber of observations, so its sample median is unique,

t23)-

The S group has one very extreme value, which
influences the moments. The sample mean for this
group is larger than the upper quartile — someone
who considers the mean to be “the” average could
say that more than 75% of the observed times are
below average. Such a thing can happen with a
skewed distribution. This is one reason why many
people prefer percentiles to moments for describing
a skewed distribution.

There are situations in which some of the times are not
observed. Section 6.5 dealt with such asituation, when
the times of interest were times of EDG failure to run,
and not all these times were reported. In the present
section, nearly all thetimesare assumed to be observed,
with no systematic biasin whichtimesfail to be observ-
able.

6.6.1.1.3 TheEmpirical Distribution Function

An estimate of F(t) called the empirical distribution
function (EDF) is defined asfollows: For an arbitrary
value of t > 0, define

F(t) = (Number of observations# t) / n.

The EDF isastep function. Itincreases by 1/n at each
observed time if all observations are distinct. More

generally, if there are mtimes equal to t, F(t) hasa
positive jump of m/n at t.

In some settings the function
11 F(t) =Pr(T>1)

isof interest. If T isthetime until failure, 1 ¥ F(t) is
called the reliability function, R(t), in engineering
contexts, and the survival function, t), in medical
contexts. A suitableword remainsto be coined when T
is the time until recovery or repair. The empirical
reliability function, or the empirical survival function,
is defined as 1 minus the EDF. Anything that can be
donewith F can betrandated intermsof 1 ! F, so this
discussion will only consider F.

With alittle mental exercise, the EDF can be expressed
infamiliar terms. For any particular t, let p denote F(t)
= Pr(T #t). Inthe data, define a“demand” to be the
generation of an observed time, and define the ith
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observation t; to bea“failure” if t; # t. By the assump-
tions for arandom sample, any observation has proba-
bility p of being afailure, and the outcomes (failuresor
successes) are statistically independent of each other.

By its definition, F(t) is the number of failures di-
vided by the number of demands, which is p, as

indicated in Section 6.3.1. Therefore, F(t) is an
unbiased estimator of F(t) at any t. It is close to F(t)
when the number of observationsis large, and a confi-
dence interval for F(t) can be constructed, the familiar
confidence interval for p.

Figure 6.42 shows the EDF based on the data in
Example 6.12 for group T.

1.0
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0.4

Estimated F(t)

0.2

0.0
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Recovery timet (min.)

Figure 6.42 Empirical distribution function (EDF) for
the data from group T in Example 6.12.

6.6.1.1.4 Histogram Estimate of the Density

The eye smooths the EDF, compensating for itsjagged
form. To accomplish the same sort of smoothing for a
density estimate, group the observed times into bins of
equal width, count the number of observationsin each
bin, and plot the histogram, aform of bar chart with the
height of each bin equal to the number of observations
inthebin. Thehistogramisproportional to an estimate
of thedensity. Some software packages can rescale the
height of the histogram so that the total area equals 1,
making it a true density estimate. Books and Ph. D.
theses have been written on density estimation, and
somemodern density estimatorsare quite sophisticated.
A few such are given in Section 6.6.3. Nevertheless,
the lowly histogram is often adequate for PRA pur-
poses.

Figures 6.43 and 6.44 show two histograms for the
data from the above EDF, using two different bin
widths. The analyst must decide what bin width
gives the most reasonable results, based on belief
about how smooth or ragged the true density might



be. Most people would judge Figure 6.44 to be too
rough, and would therefore choose wider bins.
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Figure 6.43 Histogram of the data from group T in
Table 6.16, with bin width 50.
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Figure 6.44 Histogram of same data, with bin
width 10.

Number of observations

Nimber of observations

o»—‘r\:wbmm\lm

6.6.1.2 Fitting a Parametric Distribution

Sometimesit isdesirable to fit some assumed distribu-
tional formto data. This subsection gives estimatorsif
the assumed distribution is lognormal, exponential,
gamma, or Weibull. Bayesian and non-Bayesian
estimates are given, with much of the latter taken from
an INEEL report by Engelhardt (1996).

6.6.1.2.1 Lognormal Distribution

Thismodel assumesthat T hasalognormal distribution,
or equivalently, that InT has a normal( -, ~) distribu-
tion. Define X =InT.

Frequentist Estimates. The usual estimates of - and
P ae:

I
1
Sl
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and

1
2 —\ 2
Sy :—n_lEi(xi - %)

These estimates have the same form as those given in
Section 6.6.1.1.1 for the mean and variance of T, but
these are for InT. Calculate the estimatesof - and &
to determine the estimated normal distribution of InT,
which determines the estimated lognormal distribution
of T. Note that the sample variance is defined withn !
1 in the denominator, although some authorsuse nin
the definition and dlightly different formulas below.

The material below is presented in many statistics
books, based on the fact that InT has anormal distribu-

tion. Thedistribution of (- 1)S; / o ischi-squared

with n I 1 degrees of freedom. It follows that a two-
sided 100(1 ! )% confidence interval for A is

(N-12 /1 42,,(n-1),(n- 2 / x2,(n-1)).

Here xZ(n-1)is the q quantile, that is, the 100q

percentile, of the chi-squared distributionwith nl11
degrees of freedom.

The distributionof X isnormal( =, A/n). If A is
known, it followsthat a100(1! “)% confidenceinterval
for ris

Xtz 00N,

wherez,, .,,isthe100(11! "72) percentile of the standard
normal distribution. For example, z,4 gives a two-
sided 90% confidence interval.

In the more common case that both - and 2 are un-
known, use the fact that

(X-u) 1 (S, 1n)

has a Student’s t distribution with n!1 degrees of
freedom. It followsthat a100(1 ! "% confidence
interval for - is

X+t ,(n-1s, /+/n,

where t,_,,,(N-1) isthe1! '72 quantile of the Stu-

dent’ st distribution with n11 degrees of freedom. For
example, t,5(N11) gives atwo-sided 90% confidence
interval. Percentiles of Student’'s t distribution are
tabulated in Appendix C.
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Bayesian Estimation. Bayesian estimates are given
here.

Conjugate Priors. The conjugate priors and
updateformulasare presented by Lee (1997, Sec. 2.13).
They depend on four prior parameters, denoted here as
d,, /2 n, and . The notation here follows the
notation used el sewhere in this handbook. It isnot the
same as Lee's. Quantities with subscripts, such as A
or d,, are numbers. Quantities without subscripts, A
and -, have uncertainty distributions.

Itisuseful to think of having d, degrees of freedom,
corresponding to d, + 1 prior observations for estimat-
ing the variance, and a prior estimate /2. More pre-
cisely, let the prior distribution for A/(d,~?) be in-
verted chi-squared with d, degrees of freedom. That is,
d,~,% P has a chi-squared distribution with d, degrees
of freedom. Therefore it has meand,, and thereforethe
prior mean of 1/~ is1/ A2 (See Appendix A.7.7 for
more information on the inverted chi-sgquared distribu-
tion.)

An alternative notation for the above paragraph would
definethe precision J= 1/, and the prior precision J,
= 1/F2 Thentheprior distribution of  dyJ.J, is chi-
squared with d, degrees of freedom. Although we shall
not use this parameterization, it has adherents. In
particular, BUGS (1995) uses J instead of ~ as the
second parameter of the normal distribution; see
Spiegelhalter et al. (1995).

Conditional on A, let the prior distribution for - be
normal with mean -, and variance ~/n,. Thissaysthat
the prior knowledge of - is equivalent to n, observa-

tions with variance /. Itisnot necessary for n, to
have any relation to d,.
The Bayes update formulas are
d, =d,+n,
n, =ny+n,
= (Notdy + NX) /0, and
n,n
ol =|dyo2+ (n- )2 + ———(u, - X)?|/d,.
n,+n

Herethe subscript 1 identifiesthe posterior parameters.
The posterior distributions are given asfollows. First,
F?(d,~?) hasaninverted chi-squared distribution with
d, degrees of freedom. That is, the posterior mean of
VF?is 1/F? and a two-sided 100(1!"") credible
interval for F%is

(02 1 22 112(d,), 0,02 1 12,,(d,)).
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Conditional on F2, the posterior distribution of - is
normal( -, #/n,). Therefore, conditional on/?, atwo-
sided 100(11! ")% credible interval for - is

lui i Z:I.—a/zo-/\/rTl .

The marginal posterior distribution of -, that is, the
distribution that is not conditional on /2, is as follows.
The expression

(u- )1 (o, n;)

has a Student’s t distribution with d, degrees of free-
dom. It followsthat a100(1 ! ")% credible interval
for ris

Mty (d)oy [n,

Noninformative Prior. The joint noninfor-
mative prior for (-, F?) is proportional to 1/F% Lee
(1997, Sec. 2.13) presents this prior, as do Box and
Tiao (1973, Sec. 2.4). Lee points out that when d, =
11,n,=0, and A2 = 0, the conjugate prior distribution
reduces to the noninformative prior. In the formulas
justgiven above,n;=n,d,=nt!1 - =X,and A =
Sy. The credible intervals then agree numerically with
the confidence intervals given above.

Possible Further Analyses. Some data
analysesrequireonly the posterior distribution of oneor
both parameters. In that case, use the above posterior
distributions, with either an informative or noninform-
ativeprior. Other analysesrequire more, such assimu-
lation of a set of lognormal times T or a credible
interval for the mean of T. If so, simulation of the
quantity of interest is a useful technique. Begin each
case of the simulation by generating avalue of /2 from
its posterior distribution. Then generate a value of -
from its distribution conditional on ~2 Then do
whatever is required next to obtain the quantity of
interest: generate arandom value of T from the lognor-
mal( -, F) distribution, or calculate E(T) = exp(. +
F2), or calculate whatever else is needed. Save the
quantity of interest produced in thisway. Repeat this
process as many times as needed to obtain asamplethat
accurately represents the distribution of interest.

Model Validation. Model validation is discussed in
general in Section 6.6.2. Many of the methods given
there are applicable to any assumed distribution. Some
methods, however, have been developed just for the
normal and lognormal distributions. They are con-
tained in Sections 6.6.2.1.2, 6.6.2.2.2, and 6.6.2.3.2.



6.6.1.2.2 Exponential Distribution

The exponential distribution is related to a Poisson
process, becausethetimesbetween successiveeventsin
a Poisson process have an exponentia distribution.

The exponentia distribution is presented in Appendix
A.7.4, with two possible parameterizations. The first
uses 8= 1/E(T), and the second uses - =1/8=E(T). In
data analysis, sometimes one parameter seems more
natural and convenient than the other. In the two
parameterizations, the likelihood function is

&'exp(! 8Gt)
or
SMexp(1Gt/ ) .

As a function of 8, the likelihood function here is
proportional to the likelihood function given by Equa-
tion 6.1 for Poissondata. (Replacexin Equation 6.1 by
nandt by Et.) Therefore, many of the results below
are similar to or identical to the results in Section 6.2
for Poisson data.

Frequentist Estimation. It canbeshownthat theMLE
of -isthesamplemean, t . Therefore, to estimate the
distribution, estimate - by t . This determines the
estimated exponential distribution. The corresponding

estimateof 8/ 1/ -is1/t.

For a (1! ") confidence interval, or equivalently a
100(1 ' ")% confidence interval, the lower limit for &
is
Xeip(20)
Boort 2= T
conf, "12 ZZti

and the upper limit is

8 o= le—(llz (2n)

conf, 11 72 22ti .
(See Martz and Waller 1991.) Confidencelimitsfor -
=1/8areobtained by inverting the confidencelimitsfor
8. For example, thelower confidencelimit for - equals
1 divided by the upper confidence limit for &.

Bayesian Estimation. Now consider Bayesian estima-
tion.

Conjugate Prior. Thegammadistributionis
aconjugate prior for 8 That is, lett,, ..., t, be inde-
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pendent observations from an exponential (8) distribu-
tion. Let the prior distribution of & be gamma( *}, %,)-
This uses the same parameterization as when 8 is a
Poisson parameter (Section 6.2.2.4), so that $, hasunits
of time and the prior mean of &is 'Y/%. A direct
calculation shows that the posterior distribution of 8is
also gamma, with posterior parameters

=N

h=%+Et.

Thesubscript 1 identifiesthe posterior parameters. The
prior parameters have a simple intuitive interpretation
—the prior informationis“asif” “{ duration times had
been observed with total value 4.

The percentiles of the posterior distribution are given
by

X 2a)

Ao 25

Therefore, for example, a two-sided 90% credible
interval has end points

_ Xoos(204)
20.05 Zﬂl
and
2
_ Aoss (2m)
/10.95 2[81 .

Therearetwo possiblewaysto performthe correspond-
ing analysisin terms of . (a) One way isto perform
the above analysisin terms of &, and then trandate the
answer into answers for - = 1/8. Be careful when
doing this. The percentiles trandlate directly, with the
100p percentile -, =1/8, ,,. For example, g5 =1/, 5.
The moments do not trandate directly, however. For
example, the posterior mean of -is$/(", 1 1), not 1
divided by the mean of 8. (b) The other way istolet -
have aninverted gammadistribution. Thisdistribution
is defined in Appendix A.7.7.

Either analysis gives exactly the same results. The
second approach isjust a disguised version of the first
approach, using a different distribution to avoid intro-
duction of the symbol 8.

Noninformative Prior. The Jeffreys nonin-
formative prior for &can beexpressed asagamma(0, 0)
distribution. Thisisanimproper distribution, that is, it
does not integrate to 1, but it does result in proper
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posterior distributions as long as some data have been
observed. Note, thisprior isglightly different from the
Jeffreys prior when the datahave aPoisson distribution.
When the gamma(0, 0) prior is used with exponential
data, the posterior parameters reduce to

”

post —

S =ET.

Then the Bayes posterior credibleintervalsare numeri-
cally equal to the confidence intervals. If the purpose
of a“noninformative” prior isto produceintervalsthat
match confidence intervals, this purpose has been
perfectly accomplished.

Discussion. The abovework hasillustrated some facts
that are generally true. When the observations have a
discrete distribution, such as Poisson or binomial, the
so-called noninformative priorsdo not producecredible
intervals that exactly match confidenceintervals. This
is related to the fact that confidence intervals from
discrete data do not have exactly the desired confi-
dence coefficient. Instead, they are constructed to have
at least the desired long-run coverage probability. The
situationisdifferent when the observations are continu-
oudly distributed, asin the present case with exponen-
tially distributed times. In this case, the confidence
intervals have exactly the desired long-run coverage
probability, and posterior credible intervals, based on
the noninformative prior, are numerically equal to the
confidence intervals.

Nonconjugate priors can aso be used. The procedure
is similar to that in Section 6.2.2.6, but now uses the
exponentia likelihood given above. Therefore, itisnot
discussed here.

Model Validation. Model validation is discussed in
general in Section 6.6.2. Many of the methods given
there are applicableto any assumed distribution. A few
methods, however, have been developed just for the
exponential distribution. They are mentioned in Sec-
tions 6.6.2.3.1 and 6.6.2.4.1.

6.6.1.2.3 Gamma Distribution

The distribution of T isgamma( ”, J) if the density is

1
f(t) _ a—ta—le—tlr ]
7 T'(a)

Note, this is a different parameterization from the
previous section and from Equation 6.4. This parame-
terization is related to the earlier parameterization by

the relation J= 1/$. In the present context, t and J
both have units of time.

The MLEs of the parameters are given by Bain and
Engelhardt (1991, p. 298) or by Johnson et al. (1994,
Sec. 17.7). They are the solutions of the equations

=t/
In(e)) - w(er) = In(E / T) | (6.23)

where Au) = “N(u)/=(u) is the digamma function,
calculated by some software packages, and

t= exp[(l/ n)ZInti] ,

isthe geometric mean of the observed times. Equation
6.23 must be solved for ““by numerical iteration. Bain
and Engelhardt (1991, p. 298) give atable of approxi-
mate solutions, which may be interpolated.

The MLEs of the two parameters determine the esti-
mated gamma distribution.

Bayes estimation is complicated because the gamma
distribution, like the lognormal distribution, has two
parameters, and these two parameters must have ajoint
distribution. Martz and Waller (1991, Sec. 9.5.2) cite
Lwinand Singh (1974) for an analysisthat wasfeasible
inthe 1970s. A simpler approach today would use the
freely available software package BUGS (1995),
described in Section 6.2.2.7, Section 8.3.3.3, and
elsewhere in this handbook. BUGS is designed for
models with many unknown parameters, and should
make short work of a model with only two. The joint
prior distribution would not need to be conjugate.

6.6.1.2.4 Weibull Distribution

A three-parameter Weibull distribution is given in
Appendix A.7.5. A two-parameter form of the Weibull
distributionisgiven here, by setting thelocation param-
eter 2to zero. The density is

f(ty=(8/ )t/ ) expl-(t/a)’] .

As with the gamma distribution, the maximum likeli-
hood equations do not have closed-form solutions. The
estimates must be found by iteratively solving

tfine) 1 1
T_E_FZ Int



and

o=

g
(lzﬁ) .
n

Zacks (1992, Section 7.5) gives the following simple
method for solving the first equation. Begin with

~

£, = 1. Then repeatedly solve the equation

A Sthint) 1
= ———_ =7 Int.
ﬁml %|: Ztiﬁ" n |]

withn=0, 1, 2, ... Thevalue of ,Bn converges quickly
tothe MLE /3. Then set

vp
1 A~
(—Etiﬂ) .
n

For more information, see Zacks (1992) or Bain and
Engelhardt (1991).

Q=

Alternatively, asimple approximate graphical estimate
isbased onthe hazard function. Plotsof thecumulative
hazard were discussed in Section 6.5.2. It can be
shown that the cumulative hazard function of the
Weibull distribution is

H® = (1 )°.

Therefore, estimate the cumulative hazard function as
explainedin Section 6.5.2, by jumping at each observed
time, with the size of the jump equal to 1 divided by the
number of times that have not yet been equalled or
exceeded. Thejump at t;)is1/n, thejump at t, is 1/(n
!' 1), and so forth until the final jump at t,, is1. Call
this estimate H(t). The equation for the Weibull
cumulative hazard function can be rewritten as

log H(t) = Hogt 1 dog ", (6.24)

which is linear in logt. Therefore, plot log[H (t)]

against logt, that is, plot H(t) against t on log-log
paper, and fit a straight line to the plot by eye. Pick a
point on the line and substitute those values of t and
H(t) into Equation 6.24. Thisis one equation that $
and log ""must satisfy. Pick a second point on the line
and obtain a second equation in the same way. Solve
those two equations for & and log ", thus obtaining
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estimates of $and . In the calculations, it does not
matter whether natural logarithmsor logarithmsto base
10 are used, as long as the same type is used every-
where.

This plot also gives a diagnostic test of whether the
Weibull distribution is appropriate. The degree to
which the plotted data follow a straight line indicates
the degree to which the data follow a Weibull distribu-
tion.

Just as in Sections 6.6.1.2.1 and 6.6.1.2.3, Bayes
estimation is complicated here by the multiple parame-
ters. Martz and Waller (1991, Sec. 9.1) cite anumber
of early papers using various prior distributions.
However, the easiest Bayesian approach today would
beto assign convenient diffuse priorsto the parameters
and use BUGS (1995), described in Section 6.2.2.7,
Section 8.3.3.3, and elsewhere in this handbook.

6.6.2 Model Validation

This section considers severa topics. First, the usual
investigationsof themodel assumptionsare considered:
whether subsets of the data all correspond to the same
distribution, whether thedi stribution changeswithtime,
and whether the times are serially correlated instead of
statistically independent. In addition, the distribution
may have been modeled by some parametric form, so
the goodness of fit isinvestigated. Finally, if parame-
ters have been estimated in a Bayesian way, the consis-
tency of the data with the prior must be investigated.

The order described above follows the actual order of
analysis. First, the analyst would check to see what
data subsets can be pooled and whether the usual
assumptionsseemto be satisfied. Only thenwould it be
appropriatetotry tofit some standard distributionto the
data

6.6.2.1 Poolability of Data Sources

To illustrate the methods here, this subsection will
consider the three groups of data in Example 6.12,
corresponding to three conditions of the plant during
the LOSP event. Aselsewherein this chapter, graphi-
cal methods are considered first, and statistical tests
second.

6.6.2.1.1 Graphical Methods

A simple, graphical method of comparisonisto overlay
the EDFs for the different data subsets on a single
graph. Then, look to see if the EDF are intertwined,
indicating that the subsets may be pooled, or if they are
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separated, shifted sideways from each other, indicating
that the data subsets may not be pooled. This method
is simple, but the graph can become very cluttered,
especialy if a moderate or large number of subsets
must be compared. The same comment can be made
for comparing separate histograms of the data subsets.

A graph that has come into common use is the box-
and-whisker plot, or box plot. The lower and upper
edges of the box are the lower and upper quartiles of
thedata. Thus, the box can be thought of as containing
half the data, with 1/4 of the remaining data on each
side. Themedianismarked somehow. The“whiskers’
are two lines coming out of the box and going out to
cover the range of most of the data, up to 1.5 times the
interquartile range in each direction. A few outlying
points are plotted individualy.

Figure 6.45 shows a box plot of the group T data
from Example 6.13 generated using the STATISTICA
(1995) software. The median is marked by a small
squareinthe box. The software documentation does
not give a precise definition of the difference be-
tween an outlier and an extreme point. Also, this
release of the software seems to have a small bug,
in that the maximum (excluding outliers) is labeled
as 11, when it should be 118.

500
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300

A
E
(]
£ Non-Outlier Max = 11
g 200 Non-Outlier Min = 4
§ [ 75% =95
7} 25% =17
@ 100 I .
o Median=42.5
q a o Outliers
T + Extremes

Figure 6.45 One form of a box plot. The box shows
the lower and upper quartiles, with the median
marked. The whiskers show most of the range, from
4 to 118, and individual outlying points are plotted.

Figure 6.46 shows the same box plot as drawn by a
different software package, SAS/INSIGHT (1995).
As before, the box shows the lower and upper quar-
tiles, and the median is marked, this time with a
stripe. Points beyond the whiskers are shown as
individual dots.

Box plotswere invented by Tukey (1977), and are till
being modified according toindividual taste. Any form
of the plot that is produced by a convenient software
package is probably adequate.
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Figure 6.46 A different style box plot of the same
data. The box shows the upper and lower quartiles,
with the median indicated by a stripe. The whiskers
show much of the range, with dots marking outliers.

Theexamplehereistypical, inthat the dataare skewed,
and the most obviousfeature of thebox plotsgiven here
is the long distance from the box to the largest value.
Box plotsare supposed to focus on the bulk of the data,
with only moderate attention given to the extremes.
Therefore, there are visual advantages to transforming
skewed data by taking logarithms. Therefore, al the
remaining box plots shown in this section will use
log,,(recovery time) instead of the raw times.

Figure 6.47 shows side-by-side box plots of the three
data subsets in Example 6.12. Incidentally, the box
plot of log(time) is different from the box plot of time
plotted on a logarithmic axis — the logarithms of
large times tend not to be considered as outliers.
This can be seen by comparing Figure 6.45 with the
group-T portion of Figure 6.47.
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Figure 6.47 Side-by-side box plots of the three
groups of data from Table 6.16, based on
log,,(recovery time).

Figure 6.47 shows that group P seems to have
somewhat longer recovery times than the other
groups. There seems to be little difference between
groups S and T. Tests will be given below to investi-
gate whether this visual impression is correct.



6.6.2.1.2 Statistical Tests

Tests Based on Normality. Warning: these tests are
only valid if normality or lognormality can be assumed.
If each data subset correspondsto alognormal distribu-
tion, work with X =10g(T). Either natural logs or base-
10 logs can be used, because log,,(T) = In(T)/In(10), so
both are normally distributed if either is.

When X hasanormal distribution, standard tests based
on normal theory can be used, asgivenin many statistic
books. These tests investigate whether -, the mean of
X, isthe samein each data subset, under the assumption
that the variances are the same. For added sophistica-
tion, tests of equality of the variances can also be
performed:

*  To compare the means of two data subsets, per-
form a Student’st test.

* To simultaneously compare the means of two or
more data subsets, perform a one-way analysis of
variance test.

* To compare the variances of two data subsets,
perform an F test.

»  Tocomparevariances of two or more data subsets,
use some version of alikelihood ratio test, such as
Bartlett's test or a Pearson-Hartley test, as dis-
cussed by Bain and Engelhardt (1992, p. 426).

These tests are not considered further here, because
they rely heavily on the assumption of normality. This
is especially true of the tests later in the list. Most
statistical software packages will perform these tests.
The analyst must ask whether the assumption of nor-
mality is established well enough to justify the use of
the tests.

Nonparametric Tests Based on Ranks. For general
use when normality or lognormality is not well estab-
lished, nonparametric tests are preferable. The books
by Conover (1999) and Hollander and Wolfe(1999) are
excellent summaries of standard tests. Asbefore, let X
= log(T), but do not assume that X has a normal
distribution or any other particular distribution. Tests
for location assume that various data subsets have
distributions that are shifted sideways from each other.
The shapes are the same, but the medians may be
different. This is the nonparametric analogue of
assuming that the distributions are normal with a
common variance, but possibly different means. Tests
for dispersion assume that the shapes are the same, but
possibly with different location and scale parameters.
Thisisthe nonparametric anal ogue of assuming normal
distributions with possibly different means and vari-
ances.
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To test equality of two medians against a shift alterna-
tive, use the Wilcoxon-Mann-Whitney test. This test
was introduced in Section 6.3.3.2.2. In the present
context, let W denote the sum of the ranks of times for
the first data subset, when al the times are considered
together. The ranks are the same whether or not the
logarithmic transformation is performed.

For example, to compare group P to group S in
Example 6.12, arrange all 70 times from the two
groups in ascending order, and mark the times
corresponding to group P. The smallest time from
group P is 6 minutes. This has rank 12, because it
is preceded by 11 values in group S from 2 to 5
minutes. The other ranks are found similarly. Ties
are handled by assigning the average rank to all tied
values. The rest of the test was explained in Section
6.3.3.2.2. Itis not detailed here, because the test is
normally performed by a computer.

To test whether two or more data subsets can be
pooled, the test of choice isthe Kruskal-Wallistest. It
tests whether the distribution of T isthesamein all the
data subsets, against the alternative that the distribu-
tions have the same shape but different medians. The
test is based on a sum of ranks for each data subset.
Those who want details can look in Conover (1999) or
Hollander and Wolfe (1999); everyone else can just let
the computer do the test.

When the Kruskal-Wallis test is applied to all three
groups in the data of Example 6.12, it rejects equality
of the distributions with p-value 0.026. This is
consistent with the graphical comparison in Figure
6.47 — clear evidence of a difference, though not
extreme overwhelming evidence. Based on these
analyses, Atwood et al. (1998) dropped group P from
the analysis of durations, and combined groups S
and T. Group P consists of LOSP durations when
the plant remained at power throughout the event.
The authors comment on reasons why plant person-
nel might be very deliberate in restoring offsite power
while the plant is still up and running.

To test for equality of dispersion of two data subsets,
the rank-like test of Moses is recommended. This
requires splitting each data subset into two or more
parts, and so is not suitable for very small data sets.
See Hollander and Wolfeor documentation of astatisti-
cal software package for details for applying this test.

A well-known nonparametric test has not been devel-
oped for testing equality of dispersion of morethantwo
datasubsets. Therefore, graphical comparisons, suchas
side-by-side box plots, should be an important part of
the analysis.
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Nonparametric Test Based on EDFs. A well-known
test for comparing two data subsets is the two-sample
Kolmogorov-Smirnov test. It is based on comparing
the empirical distribution functions for the two data
sets. Thetest statisticis

D = max,[|F(t) - G(t)]]

where F(t) and G(t) are the empirical distribution
functions from the two data sets. Many software
packages can perform thistest.

6.6.2.2 NoTimeTrend

This section will be illustrated by an extension of
Example 6.12, taken directly from Atwood et
al. (1998).

Based on the above type of analysis of Example
6.12, the LOSP study (Atwood et al. 1998) pooled
the data from groups S and T, but excluded group P.
That report also combined common-cause pairs of
events at multiple units into single site-events (one
pair of shutdown events, two pairs of trip events, and
two pairs that involved a shutdown reactor and a
reactor that tripped). This gave a total of 102 site
events instead of the 107 in Example 6.12. They are
sorted by event date and listed as Example 6.13.
Times are in minutes, and dates are MM/DD/YY.

6.6.2.2.1 Graphical Methods

One natural way to examine the data for a trend is
through a scatter plot of the observed values against
calendar time. Often, asin Example 6.13, afew large
valuesareoutliers. They will determinethe scale of the
vertical axis. Compared to those large values most of
the other values are very small, hugging the horizontal
axis. In such a case, the observed values should be
transformed, typically by taking logs.

Figure 6.48, from the LOSP study (Atwood et al.
1998), shows a plot of log,q(recovery time), for the
data of Example 6.13. Visually, any trend in time
appears to be very slight. The section below, which
considers statistical tests, will re-examine this exam-
ple.

A potentially more helpful plot is a cumulative plot of
recovery time against chronological sequence. The
vertical axis shows cumulative recovery time, that is,
cumulative duration of LOSP events. No logarithmic
transformation is made, because a sum of durationsis
easy to interpret, but asum of log(duration) isharder to
interpret. Also, logarithms can be negative, so acumu-
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lative plot of logarithms would not necessarily be
monotone.

Example 6.13 LOSP recovery times and event

dates.
4 04/22/80 3.5 11/21/85 40 02/11/91
106 06/03/80 4 11/21/85 240 03/07/91
62 07/15/80 20 12/12/85 67 03/13/91
120 01/16/81 46 01/01/86 29 03/20/91
14 02/01/81 100 01/28/86 60 03/21/91
15 04/27/81 12 07/19/86 277 04/23/91
10 12/23/81 155 03/05/87 24 06/15/91
29 06/22/82 37 03/21/87 60 06/22/91
17 04/26/83 4 04/04/87 20 06/27/91
11 10/04/83 388 07/14/87 11 07/24/91
163 10/08/83 118 07/23/87 4 10/20/91
240 11/14/83 2 08/17/87 77 01/29/92
97 01/08/84 53 09/11/87 20 03/23/92
90 02/12/84 29 09/16/87 20 03/27/92
15 02/16/84 17 10/14/87 35 04/02/92
2 02/28/84 59 10/16/87 10 04/28/92
5 05/03/84 4 11/17/87 6 05/03/92
2 06/04/84 8 06/24/88 454 08/22/92
120 06/05/84 38 07/17/88 57 10/19/92
20 07/16/84 24 07/29/88 95 12/31/92
11 07/26/84 14 08/13/88 136 04/08/93
10 08/01/84 95 10/16/88 37 05/19/93
20 08/21/84 19 10/25/88 12 06/22/93
22 08/24/84 9 12/26/88 3 06/26/93
3 10/22/84 45 03/25/89 10 09/10/93
14 11/16/84 90 03/29/89 15 09/14/93
15 12/19/84 29 05/14/89 12.5 10/12/93
335 04/29/85 60 06/16/89 96 12/27/93
43 05/07/85 90 06/17/89 2 05/21/94
5 08/16/85 2 06/29/89 [1675 11/18/94
73 08/28/85 45 01/16/90 132 02/27/95
25 10/03/85 14 02/26/90 917 10/21/95
13 10/07/85 140 03/20/90 127 01/20/96
60 10/22/85 37 07/09/90 330 02/06/96
3
L
o
s} 21 .
1 1
0
D .,
u 1 ]
r
O’ I T T T T
1/1/80 1/1/84 1/1/88 1/1/92 1/1/96
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Figure 6.48 Log,,(recovery time) plotted against
event date, for data from groups S and T in Example
6.13.

If the horizontal axis shows event date, the dope of the
curve represents average LOSP duration per calendar
time. If, instead, the horizontal axis shows event
seguence number, that is, the cumulative number of
events, then the slope represents average LOSP dura-
tion per event. Thelatter ismore meaningful in astudy
of durations.



Finally, a diagonal line, connecting the origin to the
final point, provides areference guide, so that the eye
can better judge the straightness of the plot.

Figure 6.49 shows the cumulative duration plot for
the data of Example 6.13.
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Figure 6.49 Cumulative duration of LOSP events

versus cumulative number of events.
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The cumulative plot clearly departs from the diagonal
straight line, because of two large duration times
near the right of the plot. The LOSP report mentions
that one of those two times is conservatively large.
The LER narrative states that recovery could have
been performed earlier, but it does not give an
estimated possible recovery time. The LOSP report
used times when recovery would have been possi-
ble, when such times were available, but for this
event the report was forced to use the actual recov-
ery time.

In Figure 6.49, a second dashed line connects the
origin (0, 0) to the 97th point, just before the first of
the two large jumps. The cumulative plot stays close
to this line until the large recovery times occur.
Thus, any “trend” is the result, not of a gradual
increase in recovery time, but of a couple of outlying
values, one of which is conservatively large. Figures
6.48 and 6.49 both reveal the two large recovery
times. In this example, however, the cumulative plot
seems more informative than the scatter plot, be-
cause the log-transformation in Figure 6.48 makes
the large times appear less dramatic.

6.6.2.2.2 Statistical Tests
Test Based on Normality. Using the method of least

squares fitting, data from a scatter plot may be fitted
with astraight line. Most software packages then test
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of the hypothesis that the slope is zero, assuming
normally distributed scatter around the line.

The cited LOSP report fitted a straight line to the
data in Figure 6.48 using the least squares method.
The trend was reported as statistically significant at
the 0.03 level.

This conclusion of a statistically significant trend
seems surprising, based on the minimal apparent
trend in the figure. The report authors did not have
the insights given by the cumulative plot, but they
critiqued the calculation in several ways:

* The calculation assumes that log(T) is normally
distributed around the trend line. The lognormal
distribution (without modeling a trend) was found
to fit the data well, and the scatter plot appears
consistent with normality. Therefore, the calcu-
lated p-value of 0.03 is close to correct.

« The evidence for the trend was very sensitive to
the two values in the upper right of the figure.
Dropping either value raised the p-value to 0.08.
Further, one of those values was known to be
conservatively high, as discussed above. This
means that the trend may in part be an artifact of
the data coding.

* The magnitude of the trend is small. A linear
trend in the mean of log(T) corresponds to an
exponential trend in the median of T. The mag-
nitude of this trend is a factor of 3.6 over the 17
years of the study. This is fairly small from an
engineering viewpoint.

* No solid engineering reasons were found to
explain the trend.

Section 6.2.3.1.2 of this handbook discusses how test
results should be interpreted. It states that calculation
of ap-valueisonly part of the analysis, and should be
followed by critical thinking. Theabove bulleted list of
considerationsillustrates that kind of thinking. Use of
acumulative plot would have hel ped the report authors
even more, revealing that a smooth trend of any kindis
inappropriate. The authors of the LOSP study chose
not to model atrend, but recognized that additional data
might change this decision.

Nonparametric Test. A test for atrend that does not
assume normality is easy to construct. Such atest is
necessary if normality cannot be assumed. If normality
can be assumed, the nonparametric test isless powerful
for detecting atrend, becauseit ignoresavailableinfor-
mation, that the data are normally distributed.
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The test is the Wilcoxon-Mann-Whitney test, first
introduced in Section 6.3.3.2.2. To apply it here,
arrange the times sequentially, in order of their event
dates. Count an event asAif it isabovethe median and
asBiif it is below the median. Discard any values that
equal the median. Now carry out the Wilcoxon-Mann-
Whitney test based on the ranks of the As in the se-
quence of all theevents. Becausethistest isbased only
on comparisonsto the median, it isthe same whether or
not logarithmic transformations are used.

When this was done with the data from Example
6.13, the median duration was 29. The first duration
in Example 6.13 was a B, the next three were A, and
so forth. In all, there were 48 As and 50 Bs. The As
had higher average rank than the Bs, suggesting an
upward trend, but the p-value was 0.09, not quite
statistically significant. The nonparametric testis not
as sensitive as the parametric test for detecting the
small trend, in part because it does not make as
much use of the two extreme values seen in Figure
6.49. If the normality assumption were not satisfied,
only the nonparametric test would be valid.

6.6.2.3 Goodness of Fit to Parametric M odels

One way to model recovery times and other durations
is to model the distribution of the durations by some
parametric distribution, such as lognormal, Weibull,
etc. One must then check to see if the data fit this
proposed model well. This section gives graphical
methods and statistical tests for such investigations.

6.6.2.3.1 Graphical Methods

The basic ideais to compare nonparametric estimates,
which comedirectly fromthe data, with estimatesbased
on the fitted model under consideration. For example:

»  Compare the histogram to the density from the
fitted model.

»  Compare the EDF to the c.d.f. of the fitted para-
metricmodel. Equivalently, comparetheempirical
reliability function (1 minus the EDF) to thefitted
reliability function.

»  Compare the quantiles of the data to the quantiles
of the fitted distribution. This plot is called a
guantile-quantile plot, or a Q-Q plot. Q-Q plots
have become very popular for assessing goodness
of fit, although they take getting used to.

These three comparisons are illustrated below, using
the data of Example 6.13, and an assumed lognor-
mal distribution. First, the fitted distribution is found
by taking natural logarithms of the recovery times,
and estimating the mean and variance of their
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distribution. The estimated mean is 3.389 and the
estimated standard deviation is 1.434. The In(time)
values are modeled as normally distributed with this
mean and variance. The raw times have the corre-
sponding lognormal distribution.

Figure 6.50 shows the histogram density with a fitted
lognormal density overlaid. Because this distribution
is concentrated at small values, the goodness of fitis
difficult to judge. Therefore, the histogram of the
In(time) values are also plotted, with a normal density
overlaid, in Figure 6.51. Actually, the area under the
histogram equals the number of observations, and
the density has been rescaled to have the same
area.

lognorm (x, 3.388836, 1.434476)
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Figure 6.50 Histogram of data from Table 6.19, with

multiple of lognormal density overlaid. The skewness
makes goodness of fit difficult to assess.
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Figure 6.51 Histogram of In(time), with a multiple of
a normal density overlaid. Fit appears as good as
achievable without using a bimodal distribution.

Figure 6.52, from the LOSP report, shows a plot of
the reliability function, 1 minus the EDF, with the
corresponding fitted function, 1 minus the lognormal
c.d.f. The plot in this form is useful for interpreting
the degree to which the fitted c.d.f. differs from the
empirical c.d.f., because the horizontal axis is in
units of time. A plot in terms of log(time) would not
hug the axes so closely. Therefore, discrepancies



between the curves would be more visible, but their
magnitudes would be harder to interpret in real-world
terms.
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Figure 6.52 Empirical and theoretical reliability
functions, where the reliability function is defined as

1 minus the c.d.f.
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Finally, Figure 6.53 gives a quantile-quantile (Q-Q)
plot, described by Wilk and Gnanadesikan (1968). If
only one plot could be used, a Q-Q plot would be a
strong contender. A Q-Q plot compares two distribu-
tions by plotting the quantiles of one against the corre-
sponding quantiles of theother. If Xisalinear function
of Y, X =a+ bY, thenaQ-Q plot of X versus Y will be
linear. The parameters a and b do not need to be
known or estimated; linearity of theplot tellstheanalyst
whether the two distributions are the same except for a
linear transformation. Users of probability paper will
recognizethat aplot on probability paper isaformof a

Q-Q plot.

01 05.1 .25 43 75 .9 .95 99

Observed In(recovery time)
, O P N W b OO N 0O

w
N

-1 0 1 2 3
Theoretical normal quantile

Figure 6.53 Quantile-quantile plot of In(recovery
time) and fitted normal distribution. The points fall
nearly on a straight line, indicating good fit.

In Figure 6.53, the software package implemented
the Q-Q plot by plotting the ordered values of In(time)
against the theoretical expected values of the corre-
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sponding order statistics assuming normality. For
example, denote In(t) by y. In the implementation of
this particular software package, the ith ordered
value, y, is plotted against the expected value of Z,
assuming that 102 values of Z are randomly sampled
from a standard normal distribution. The points
follow a straight line. This indicates that the data are,
apparently, normally distributed.

The parameters, - and £, can beignored in a Q-Q plot
based on the normal distribution, because a normal
random variable Y with mean - and standard deviation
Fisrelatedto Zby Y= -+ FZ Thisisalinear trans-
formation, and so does not change the linearity or
nonlinearity of theplot. Infact, it isnot even necessary
to obtain estimates of - and £~ For distributions other
than normal, the parameters may need to be estimated
before the Q-Q plot can be constructed.

The expected values of the order statistics cannot be
constructed without tables or a computer program.
Users of probability paper may construct a simpler
version, plotting y;;, againgt the i/(n+1) quantile of a
standard normal distribution. Herenisthetotal number
of observations, 102 in the present example. This
simpler version gave its name to the plot, a quantile-
quantile plot.

For the purpose of illustration, Figure 6.54 gives a Q-
Q plot of the same example data, assuming that the
raw recovery times have a normal distribution. Of
course the fit is horrible — no one expects the raw
times to have a normal distribution. This lack of fit is
shown by strong curvature in the plot. The two
largest times show the lack of fit most emphatically,
but even without them the plot appears to show a
curvature that indicates non-normality.
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Theoretical normal quantile
Figure 6.54 Quantile-quantile plot of raw recovery

times against fitted normal distribution. The strong
curvature indicates bad fit.
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The particular form of the distribution can sometimes
allow special tricks. Let usleave the present example,
and consider investigating whether datat,, ..., t, come
from an exponential distribution. Example 6.6, which
was deferred from Section 6.2.3.4, will be used to
illustrate the method.

The idea of the Q-Q plot is that, when the data come
from the assumed distribution, then

t, - FUi/(n+1)],

where F'! is the inverse of the assumed c.d.f. Let us
find the inverse of the exponential c.d.f. Set

y=F(t)=11¢e%.

To find the inverse, solve for t = F**(y):

and therefore
t=1n1!y)/8.

Theright-hand sideis F**(y), so the defining relation of
the Q-Q plot is

t, - Vn[1 1 i/(n+1))/8.

Thus, a plot of the ordered times against TIn[1 !
i/(n+1)] should be approximately linear, regardless of
thevalue of 8 Thelinearity or nonlinearity of the plot
does not depend on whether & has been estimated well.
Nonlinearity is evidence against the assumed exponen-
tial distribution.

Example 6.6 contains times between LOSP events,
which should be exponentially distributed. A plot of
the ordered times against 'In[1 ! i/(n+1)] is shown in
Figure 6.55. Because the plot does not show much
curvature, it indicates good fit to the exponential
distribution.

6.6.2.3.2 Statistical Tests

Theprevioussection used graphstoinvestigatewhether
data followed a certain kind of distribution. The
present section gives statistical tests of hypotheses, for
investigating the same question. The tests here are
called goodness-of -fit tests, because they are intended
to test whether the data fit the assumed model well.
The null hypothesisisthat the data come from a distri-
bution of the assumed form, for example, from a
lognormal distribution. The null hypothesis does not
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specify the parameters. Therefore, the null hypothesis
includes a family of distributions. The alternative
hypothesis is that the data come from some other
distribution.
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Figure 6.55 Q-Q plot for checking exponential
distribution in Example 6.6.

As always, remember that “acceptance” of the null
hypothesis does not provide evidence that the null
hypothesis is true. It merely indicates a lack of evi-
dencethat the null hypothesisisfalse. For example, the
data may be consistent with a lognormal distribution,
and also consistent with a gamma distribution and a
Weibull distribution. In such acase, the analyst should
not make assertions that are highly dependent on the
form of the distribution. For example, a sample of 10
observations may be consistent with many possible
distributions. An estimate of the 99.9th percentile of
the distribution would be alarge extrapol ation fromthe
actual data, highly dependent on the assumed form of
the distribution. A confidence interval on this percen-
tile would be even worse, because it would give an
appearance of quantified precision, when in reality the
distribution could have practically any form out in the
tail.

In summary, even though amodel has been “accepted,”
it is only an approximation. The analyst should not
make assertions that are sensitive to small departures
from the model.

Chi-Squared Test. The chi-sguared test, seen in
Sections 6.2 and 6.3, is aso an all-purpose goodness-
of-fit test. To apply it inthe present context, estimate
any unknown parameters of the hypothesized distribu-
tion of T. Based on these parameter estimates, divide
thetimeaxisinto c binsof equal probability. Theletter
c stands for cell, another term for a bin in this context.
Based on the recommendations of Moore (1986),
choose the number of binsso that n/cisat least 1, and
preferably at least 2. Let x, be the observed number of



values of T intheith bin. Because the bins have equal
probability, the expected number of valuesof T that will
fal in any bin is n/c, the number of observations
divided by the number of bins. The Pearson chi-
squared statisticis

X =Ex L e)lq ,

where each g equals n/c and each X is an observed
count.

If the null hypothesis is true, the distribution of X2 is
approximately chi-squared. Thecommonly quotedrule
is that the degrees of freedomisc ! 1 ! p, wherepis
the number of estimated parameters. For example,
suppose the null hypothesisisthat the distribution of T
is lognormal, or equivalently, that In(T) is normal.
Thentwo parametersmust be estimated, -~ and ~. Thus,
the commonly quoted rulefor the degrees of freedomis
c ! 3. Infact, researchers have found that this is not
quite correct, for subtle reasons described by Moore
(1986, Section 3.2.2.1). The correct degrees of free-
dom are somewherebetween c! 1 pand c ! 1. The
exact value depends on the form of the distribution in
the null hypothesis.

Let us apply this to the LOSP-recovery data from
Example 6.13, and use X = In(T) for convenience.
Let H, be the hypothesis that X is normally distrib-
uted. As mentioned above, the estimates of . and
Fare 3.389 and 1.434. With 102 observations, it is
convenient to take 50 bins, so that each expected
count is 102/50 = 2.04. The bin boundaries are the
0.02, 0.04, ..., 0.98 quantiles of the distribution.
These are estimated as

y, = 3.389 + 1.434z,,

where g is 0.02, 0.04, etc., and z, is a quantile
interpolated from a table of the standard normal
distribution. For example, z,,, = 12.054.

When this is carried out, using a computer to perform
the calculations, the value of X? is 63.69. The
distribution under H, is chi-squared with degrees of
freedom between 47 and 49. Therefore, the p-value
is between 0.053 and 0.077. The test almost rejects
normality of In(T) at the 0.05 level, in spite of the
graphical evidence to the contrary.

Upon examination, the test is revealed to be too
powerful for its own good. It notices that the values
tend to cluster, five occurrences of 2 minutes, six
values of 20 minutes but no values of 21 minutes,
etc. With 50 cells, each observed time is commonly
the sole occupant of a cell. The test notices that the
numbers have been rounded to convenient times,
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such as 20 minutes, and uses this as evidence
against normality. Infact, such clustering is a depar-
ture from normality, and from any other continuous
distribution. But it is not the kind of departure that is
of interest to most analysts.

A coarser binning, into fewer cells, would not be
distracted by fine clustering, and would search for
more global departures from the null hypothesis.

We conclude this discussion of the chi-squared test by
considering again the exponential example that was
deferred from Section 6.2.3.4.

Example 6.6 consists of 25 times. The null hypothe-
sis is that the data come from an exponential distri-
bution. The unknown &is estimated as the number
of events divided by the total observation period,
25/(2192 days) = 0.0114 events per day. This MLE
is justified based on the Poisson count of events, as
in Section 6.2.1.1. To obtain a moderate expected
count in each bin, let us use ten bins. They have
equal estimated probabilities, 0.10 each, if they run
from

0 days to [!In(0.9)]/0.0114 = 9.24 days
9.24 days to [1In(0.8)]/0.0114 = 19.57 days

5.01.89 days to infinity.

These calculations are all based on the exponential
c.d.f,F(t)=1-exp(/&). Setting F(t)t0 0.1, 0.2, and
so forth gives the bin boundaries.

There are four observed times in the first bin, two in
the second, and so on. The expected count in each
bin is 25/10 = 2.5. The calculated value of X 2 is
9.00. This must be compared with the percentiles of
the chi-squared distribution. There are ¢ = 10 bins,
and p = 1 estimated parameter. Therefore, the
degrees of freedom are between 10 ! 1 =9 and 10
1 2 =8. The value 9.00 is in the middle of both of
these distributions, the 56th percentile of one and the
66th percentile of the other. Therefore, the chi-
squared test finds no evidence against the exponen-
tial distribution. This agrees with the earlier graphical
analysis.

Shapiro-Wilk Test for Normality. Many software
packages offer the Shapiro-Wilk test for normality. It
is based on obseving how closely the order statistics
follow theoretical norma values, as displayed for
exampleinFigure6.53. For testing thenormal distribu-
tion, the Shapiro-Wilk test is one of the most powerful
tests against awide variety of alternatives. Details are
not given here, because all the calculations are carried
out by the computer.
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With the logarithms of the data of Example 6.13, the
Shapiro-Wilk test does not reject normality of In(T),
giving a p-value of 0.34. This agrees with the visual
evidence of Figure 6.53.

Tests Based on the EDF. Several families of tests
have been proposed based on the empirical distribution
function (EDF, defined in Section 6.6.1.1.3). Theidea
isto reject the null hypothesisif the EDF is not “close
to” thetheoretical c.d.f. Closeness can be measuredin
various ways, giving rise to a variety of tests. EDF-
based tests are appealing because they do not require a
choice of bins, but simply use the data as they come.

The most famous such test isthe Kolmogorov test, also
known asthe K olmogorov-Smirnov test. Itisdescribed
in Appendix B.3.4. Thistest differsfromthesimilarly-
named test in Section 6.6.2.1.2 because the present test
asks whether arandom variable has a certain distribu-
tion, and the earlier test asks if two random variables
havethe samedistribution. Thesearedightly different
guestions. Thetest herergjects H, if

max | F(t) - F(t)|

is large, where the maximum is over al values of t.
Here, any unknown parametersin F must be estimated;
the effect of this estimation istypically ignored.

When SAS (SAS Version 8, 2000) performs the
Kolmogorov test of lognormality on the times in
Example 6.13, it gives a p-value > 0.15. That is, it
does not calculate the exact p-value, but it does
report that the departure from lognormality is not
statistically significant.

The Cramér-von Mises test and the Anderson-Darling
test are other EDF-based tests, designed to remedy
perceived weaknesses in the Kolmogorov test. The
Cramér-von Mises test is based on

[IF®-F@OP f(t)dt.

Here, F isthedistribution that is assumed under the null
hypothesis, and f is the corresponding density. Thus,
the Kolmogorov test looks at the maximum difference

between F and F, while the Cramér-von Mises test
looksat an average squared difference. The Anderson-
Darling test is based on

[{IF@ - FOP {FOIL- F@O)]}
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Thisdivison by F(t)[1 ! F(t)] gives greater weight to
thetails of the distribution, where departuresfromF is
most likely to occur. Thus, this test is intended to be
more powerful than the Cramér-von Mises test against
common alternative hypotheses. Many datistical
packages perform one or more of these tests.

When testing lognormality of the data in Example
6.13, SAS reports a p-value of >0.25 for the Cramér-
von Mises test and also for the Anderson-Darling
test. Just as for the Kolmogorov test, SAS does not
compute the exact p-value, but it does report that the
departure from lognormality is not statistically signifi-
cant.

6.6.2.4 Consistency of Data with Prior in
Bayesian Parametric Estimation

Theissue hereiswhether the dataare consistent with an
assumed infor mative prior distribution for the unknown
parameters. If a noninformative prior distribution is
used, then the question does not arise, because the
noninformativedistributionissupposed to be consistent
with anything.

6.6.2.4.1 Exponential Durations

A quantitative approach is possible when T has an
exponential (8) distribution. Inthiscaseal theinforma-
tion of interest about &is contained in Gt;, as seen in
Section 6.6.1.2.2. Therefore, we can compare Gt; to
what would be expected based on prior belief about 8.

If Gt; issurprisingly large or surprisingly small, that is,
if Gt isin either tail of the distribution of GT;, then the
prior distribution is questionable. The value Gt; isin
thelower tail if Pr(GT, < Gt;) isasmall probability, and
in the upper tail if Pr(GT, > Gt) isasmal. To be
specific, consider the upper tail. Therelevant probabil-
ity is

Pr(GT, > Gt) = IPr(GT, > Gt; | § f,,(8) d8. (6.25)
The inner conditional probability can be evaluated by
using the fact that the distribution of GT, , given &, is
gamma(n, 8). If the prior distribution of &isnot conju-
gate, the integral in Equation 6.25 must be evaluated
numerically, just as in Sections 6.2.3.5 and 6.3.3.4:
either (a) computetheintegral using numerical integra-
tion, or (b) generate arandom sample of 8valuesfrom
the prior distribution, find Pr(GT, > Gt; | 8 for each
such &, and find the average of these probabilitiesasthe
overall probability.

Treatment of the lower tail follows the same pattern.



If the prior distribution of & is conjugate, that is,
gamma( ", §), then Equation 6.25 simplifies. By
working out the integralsit can be shown that GT,/(GT,
+ $) hasabeta(n, ") distribution. Equivalently, ¥(GT,
+ $) has a beta( ", n) distribution. These are marginal
distributions corresponding to Equation 6.25, from
which &hasbeen integrated out. Therefore, if Gt, /(G
+9) isineither extremetail of a beta(n, ") distribution,
or equivalently, if $/(Gt, +$) is ineither extremetail of
a beta( ", n) distribution, then the gamma( *’, $) prior
distribution is questioned.

In Example 6.12, suppose that the only events of
interest are those in the group of S (shutdown)
events. Suppose also that the times are assumed to
be exponential(8) — the realism of that assumption is
not the subject of the present investigation. Finally,
suppose that & is assigned a gamma(2, 30) prior
distribution, roughly equivalent to two prior observed
times with total duration of 30 minutes. The shape
parameter of only 2 means that the prior is not very
informative, so we expect the data to be consistent
with it, unless 30 minutes is very unrealistic.

From Table 6.15, we find n = 62 and the total of the
durations is 62x92.3 = 5722.6. The beta tables in
Appendix C assume that the first beta parameter is
smaller than the second, so it is convenient to work
with the beta(2, 62) distribution rather than the
beta(62, 2) distribution. Therefore, we ask if

30/(5722.6 + 30) = 5.2E13

is in either tail of a beta(2, 62) distribution. Table C.5
shows that the 5th percentile of the beta(2, 62)
distribution is roughly 6E!3 (it is an interpolation of
7.01E!'3 and 3.53E!3inthetable). Table C.6 shows
that the 2.5th percentile is roughly 4E13. So the
observed value is somewhere between the 2.5th and
5th percentiles of the predictive distribution. This
means that the prior may need rethinking. It should
either be modified or it should be justified more
carefully. (Inthe present example the prior came out
of thin air, but the real difficulty is that the durations
are not really exponential — the whole exercise is
only for illustration.)

6.6.2.4.2 DistributionsHaving Two or More
Parameters

When the topic of comparing the datato the prior arose
in connection with estimating &or p, therewasasingle
parameter of interest, and a single observed random
variablethat contained all theinformation of interest for
that parameter. This random variable was the total
count of initiating events, the count of failures on
demand, or, in the previous section, the total duration.
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However, the present subsection considers a distribu-
tion with (at least) two parameters, such as - and For
""and $. No single random variable contains all the
information of interest. Therefore, in such casesit is
simplest to compare the data with the prior by con-
structing:

1. aprior credibleregion for the two parameters, and
2. aposterior credible region based on noninforma-
tive priors.

The first case shows what the prior distribution says,
and the second case showswhat thedatasay. Compare
the answersfrom 1 and 2 to seeif the prior distribution
and the data seem consistent, that is, if the prior region
contains most of the posterior region. Instead of two-
dimensional credible regions, one might calculate
credibleintervasfor theindividual parameters. Thisis
simpler, but ignores the possible correlation of the two
parameters. Because thisissuch an advanced topic, no
examples are worked out here.

6.6.3 Nonparametric Density Estimation

The most prevalent methods of estimating a density
function are parametric methods. As described in
Section 6.6.1.2, the density is specified in terms of a
functional form, such as lognorma or Weibull, with
unknown parameters. The parameters are then esti-
mated from the data. However, there aso exist
nonparametric methods for estimation of a density
function, some of which are described here.

The simplest and best known method of estimating a
density function is to construct a frequency table, and
then to plot the histogram. This method was discussed
in Section 6.6.1.1.4. Two illustrations are given there,
Figures 6.43 and 6.44. Both use the 45 recovery times
from part T of Example 6.12. The methods discussed
below are illustrated with the same set of 45 recovery
times.

6.6.3.1 Smoothing Techniquesand Kernel
Estimators

Smoothing techniques can be motivated by recalling
that the density function, f(t), is the derivative of the
c.df., F(t). The EDF, discussed in Section 6.6.1.1.3

and denoted by F(t) , is a natural estimator of F(t).

Thus, anatural estimator of the density isthe differen-
tial quotient using the EDF in place of the c.d.f.,

F(t+h)—F(t-h)
2h

fn(t) = , (6.26)
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where h is an increment of the variablet. The main
problem in applying such an estimator is to choose h
small enough so that thedifferential quotient adequately
approximates the derivative, but large enough so that
the interval with limits t £ h contains a sufficient
amount of data.

Recal that F(t) equas the number of observations
having a value less than or equal to t divided by the
total number of observations, n. Therefore, Equa-
tion 6.26 can also be written as

f(t) _ L i K(ﬂ) :

6.27
nh =1 h (6.27)

where K is a function defined as K(u) = 1/2 if u is
between + 1, and zero otherwise, and t; istheith obser-
vation. Notice that an observation t; only enters into
this calculation if (t; T t)/his between + 1, or in other
wordsif t; isnear t; specifically if t; iswithin h units of
t. Thus, the estimate is based on averaging values of
1/2 when observationsarenear t. Thisisaspecial case
of a genera type of estimator known as a kernel
density estimator. The function K(u) is called the
kernel and the increment h is called the bandwidth.
The bandwidth defines a “window”, centered at t and
having width 2h, which contains the data involved in
the estimate at the point t.

6.6.3.1.1 The Rectangular Kernel

When graphed, the kernel corresponding to Equa-
tion 6.27 isarectangle of height 1/2 and width 2h. The
resulting estimator is illustrated here with group T of
Example 6.12 and two bandwidths.

Figure 6.56 shows a graph of the estimate of the
density when the bandwidth is h = 25 minutes.
Notice that the estimated density is zero in the
interval roughly from 150 to 250 minutes. This
corresponds to the fourth and fifth bins of the histo-
gram of Figure 6.43, both of which were empty.

It is also evident that the graph is somewhat jagged,
indicating that the bandwidth may be so small that
not enough data are being captured in the window.

The vertical dashed line marks the pointt =0, to be
discussed later.

Consider now a rectangular kernel estimate with the
same data but with a larger bandwidth, h = 50
minutes. The results are shown in Figure 6.57.
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Figure 6.56 Density estimate of the data from group
T in Example 6.12, with rectangular kernel and
bandwidth 25.
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Figure 6.57 Density estimate of the data from group
T in Example 6.12 with rectangular kernel and
bandwidth 50.

There is still some jaggedness, but it is somewhat
less than in Figure 6.56. There is still a noticeable
low point in the vicinity of 200 minutes, but it is
narrower than in Figure 6.56.

It isclear that by smoothing over avery wide window,
any features can be smoothed out. For thisreason, itis
desirableto give somethought to whether thereissome
explanation for low density. In other words, are these
real effects or are they just due to randomness? If the
low estimates can be explained by something other than
random fluctuation, smoothing would tend to hide this
fact, but if they are due to randomness, then smoothing
should be helpful.



Thisissuewas also seen with histograms. Choosingtoo
narrow binsfor the size of the data set caused the shape
to beinfluenced too much by randomvariation. Choos-
ing too wide bins smoothed out nearly all the variation.
The question of how much to smooth and how much
roughness to allow is inherent in al forms of density
estimation.

6.6.3.1.2 Boundary Problems

Notice, that as the bandwidth is increased, t